Halloysite nanoclay reinforced hydroxyapatite porous scaffold for hard tissue regeneration.

J Mech Behav Biomed Mater

Department of Materials Sciences and Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, 208016, India. Electronic address:

Published: April 2023

Hydroxyapatite (HAP), a natural constituent of bone tissue is commonly used for the clinical treatment of bone defects due to its similar structure with bone and excellent biocompatibility. However, the processing exertion, poor osteoinductive capability and poor mechanical strength of HAP needs further addressing for its immense implementation in tissue engineering. Different approaches have been reported to escalate the mechanical hardness and osteogenic potential of HAP. In the present work, halloysite nanoclay (HNC) and sericin protein were used for better mechanical and osteogenic properties, respectively. Halloysite nanoclay (HNC, 1.0-4.0%) was used to reinforce hydroxyapatite (HAP) and the mechanical strength of nanocomposite scaffolds were evaluated. After surface modification of nanocomposite scaffolds with 1.0% silk sericin protein; physical properties like microstructure, porosity, swelling ratio and degradation rate were evaluated. Cell morphology, cytocompatibility and alkaline phosphatase (ALP) activity were assessed using MG 63 osteoblast cell lines. HAP reinforced with 4% HNC (HAP@4) showed a significant increase (199 MPa) in young modulus as compared to pure HAP. HAP reinforced with 2% HNC (HAP@2) and 4% HNC (HAP@4) showed a significant decrease in porosity as well as degradation rate than pure HAP but no significant difference was observed in swelling ratio. The scanning electron microscope (SEM) images of the scaffolds showed porous architecture. Remarkably, the incorporation of HNC in HAP enhanced the cytocompatibility as well as ALP activity in comparison to pure HAP. Overall, these results suggested that halloysite nanoclay reinforced HAP scaffold could be an auspicious alternative for bone tissue regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2022.105626DOI Listing

Publication Analysis

Top Keywords

halloysite nanoclay
16
pure hap
12
hap
11
nanoclay reinforced
8
tissue regeneration
8
hydroxyapatite hap
8
bone tissue
8
mechanical strength
8
nanoclay hnc
8
sericin protein
8

Similar Publications

Synthesis and Characterization of a Nanoclay Reinforced Gelatin-Based Hybrid Hydrogel.

J Biomed Mater Res A

January 2025

Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada.

Bentonite clay nanoparticles assume a pivotal role in 3D bioprinting and tissue engineering by augmenting the mechanical rigidity and biological efficacy of hydrogels. In this investigation, Span80 was employed as a surfactant to facilitate the synthesis of uniformly sized bentonite nanoparticles measuring approximately 700 nm in diameter. The resultant hybrid hydrogel displaced a marked increase in compressive modulus, achieving a peak value of 17.

View Article and Find Full Text PDF

Despite the unique properties of clay nanocomposites for cardiovascular applications, there are few data on the hemocompatibility of these nanomaterials. This study represents the first comprehensive investigation of the hemo/biocompatibility of clay nanocomposites . Nanocomposite coatings of polylactic acid (PLA)-polyethylene glycol (3 wt %)-Cloisite20A nanoclay (3 wt %) were produced using electrospraying technique as potential drug-eluting stent (DES) coatings.

View Article and Find Full Text PDF

Injectable Polyhydroxyalkanoate-Nano-Clay Microcarriers Loaded with r-BMSCs Enhance the Repair of Cranial Defects in Rats.

Int J Nanomedicine

December 2024

Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.

Purpose: Successful regeneration of cranial defects necessitates the use of porous bone fillers to facilitate cell proliferation and nutrient diffusion. Open porous microspheres, characterized by their high specific surface area and osteo-inductive properties, offer an optimal microenvironment for cell ingrowth and efficient ossification, potentially accelerating bone regeneration.

Materials And Methods: An in vitro investigation was conducted to assess the physicochemical properties, porosity, and biocompatibility of PHA-nano-clay open porous microspheres.

View Article and Find Full Text PDF

Multifunctional nanocellulose hybrid films: From packaging to photovoltaics.

Int J Biol Macromol

December 2024

Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands. Electronic address:

Article Synopsis
  • The study focused on creating eco-friendly multifunctional nanocellulose hybrid films for applications in packaging and photovoltaics, using varying ratios of cellulose nanocrystals and carboxymethylated cellulose nanofibrils.
  • Hybrid films incorporating montmorillonite clay improved structural integrity, but increased brittleness was noted with higher amounts of CNF and MTM.
  • The films exhibited good light transmittance and color stability under sunlight, highlighting their potential for diverse applications, particularly in optoelectronics and sustainable packaging.
View Article and Find Full Text PDF

Natural-derived porous nanocarriers for the delivery of essential oils.

Chin J Nat Med

December 2024

Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; State Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang 330096, China; Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, China. Electronic address:

Essential oils (EOs) are natural, volatile substances derived from aromatic plants. They exhibit multiple pharmacological effects, including antibacterial, anticancer, anti-inflammatory, and antioxidant properties, with broad application prospects in health care, food, and agriculture. However, the instability of volatile components, which are susceptible to deterioration under light, heat, and oxygen exposure, as well as limited water solubility, have significantly impeded the development and application of EOs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!