Mycotoxins, including aflatoxin B1 (AFB), zearalenone (ZEN) and deoxynivalenol (DON), are common contaminants of moldy feeds. Mycotoxins can cause deleterious effects on the health of chickens and can be carried over in poultry food products. This study was conducted to investigate the effects of moldy corn (containing AFB, ZEN, and DON) on the performance, health, and mycotoxin residues of laying hens. One hundred and eighty 400-day-old laying hens were divided into 4 treatments: basal diet (Control), basal diet containing 20% moldy corn (MC20), 40% moldy corn (MC40) and 60% moldy corn (MC60). At d 20, 40, and 60, the performance, oxidative stress, immune function, metabolism, and mycotoxin residues in eggs were determined. At d 60, mycotoxin residues in muscle and edible viscera were measured. Results showed the average daily feed intake (ADFI) and laying performance of laying hens were decreased with moldy corn treatments. All the moldy corn treatments also induced significant oxidative stress and immunosuppression, reflected by decreased antioxidase activities, contents of cytokines, immunoglobulins, and increased malonaldehyde level. Moreover, the activities of aspartate aminotransferase and alanine transaminase were increased by moldy corn treatments. The lipid metabolism was influenced in laying hens receiving moldy corn, reflected by lowered levels of total protein, high density lipoprotein cholesterol, low density lipoprotein cholesterol, total cholesterol, and increased total triglyceride as well as uric acid. The above impairments were aggravated with the increase of mycotoxin levels. Furthermore, AFB and ZEN residues were found in eggs, muscle, and edible viscera with moldy corn treatments, but the residues were below the maximum residue limits. In conclusion, moldy corn impaired the performance, antioxidant capacity, immune function, liver function, and metabolism of laying hens at d 20, 40, and 60. Moldy corn also led to AFB residue in eggs at d 20, 40, and 60, and led to both AFB and ZEN residues in eggs at days 40 and 60, and in muscle and edible viscera at d 60. The toxic effects and mycotoxin residues were elevated with the increase of moldy corn levels in feed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9932114 | PMC |
http://dx.doi.org/10.1016/j.psj.2023.102502 | DOI Listing |
PLoS One
January 2025
Engineering Research Center of Hydrogen Energy Equipment& Safety Detection, Universities of Shaanxi Province, Xijing University, Xi'an, China.
The traditional method of corn quality detection relies heavily on the subjective judgment of inspectors and suffers from a high error rate. To address these issues, this study employs the Swin Transformer as an enhanced base model, integrating machine vision and deep learning techniques for corn quality assessment. Initially, images of high-quality, moldy, and broken corn were collected.
View Article and Find Full Text PDFPlant Dis
December 2024
Yunnan Agricultural University College of Plant Protection, , Yunnan Agricultural University, Fengyuan Road 95, Kunming, kunming, China, 650201.
Maize (Zea mays. L) is cultivated globally as a staple food crop, animal feed, and biofuel. However, persistent diseases in maize have led significant yield losses and a decline in grain quality (Yang et al.
View Article and Find Full Text PDFInt J Food Sci
November 2024
Department of Molecular Biology and Genetics, International Maize and Wheat Improvement Center (CIMMYT), PO Box 1041-00621, Nairobi, Kenya.
Int J Mol Sci
October 2024
College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, Luoyang 471023, China.
Zearalenone (ZEA) is a mycotoxin produced by Fusarium spp. fungi and is widely found in moldy corn, wheat, barley, and other grains. ZEA is distributed to the whole body via blood circulation after metabolic transformation in animals.
View Article and Find Full Text PDFFront Microbiol
September 2024
School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!