Dehydroepiandrosterone (DHEA) is an important neurosteroid hormone to keep human hormonal balance and reproductive health. However, DHEA was always produced with impurities either by chemical or biological method and required high-cost purification before the medical use. To address this issue, a novel chemoenzymatic process was proposed and implemented to produce DHEA. An acetoxylated derivate of 4-androstene-3,17-dione (4-AD) was generated by chemical reaction and converted into DHEA by an enzyme cascade reaction combining a hydrolysis reaction with a reduction reaction. The hydrolysis reaction was catalyzed by a commercial esterase Z03 while the reduction reaction was catalyzed by E. coli cells co-expressing a 3β-hydroxysteroid dehydrogenase SfSDR and a glucose dehydrogenase BtGDH. After the condition optimization, DHEA was synthesized at a 100 mL scale under 100 mM of substrate loading and purified as white powder with the highest space-time yield (4.80 g/L/h) and purity (99 %) in the biosynthesis of DHEA. The successful attempt in this study provides a new approach for green synthesis of highly purified DHEA in the pharmaceutical industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2023.106391 | DOI Listing |
Carbohydr Polym
March 2025
Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:
Chitosan (CS) is a versatile polysaccharide with numerous inherent biological activity, while the lack of amphiphilicity limits its application in emulsion-based systems. In this study, erythorbyl myristate (EM) with interfacial activity was chemically modified to 5-O-succinyl EM (EMS) and grafted onto CS to improve the emulsifying properties. The grafting reaction was conducted by the catalysis of protease, with the progress of the reaction monitored by HPLC analysis and UV absorbance measurement.
View Article and Find Full Text PDFBiochemistry
December 2024
Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.
(Mtb) is a leading cause of death, with an escalating global occurrence of drug-resistant infections that are partially attributed to cell wall mycolic acids derived from type II fatty acid biosynthesis (FAS-II). Here, the central acyl carrier protein, AcpM, contributes to the regulation of complex and specific protein-protein interactions (PPIs), though the orchestration of these events remain largely unresolved due to unique features of AcpM. Limitations include complexities in generating modified AcpM in a single state.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.
Sensing of peptidoglycan fragments is essential for inducing downstream signaling in both mammalian and fungal systems. The hexokinases NagK and Hxk1 are crucial enzymes for the phosphorylation of peptidoglycan molecules in order to activate specific cellular responses; however, biochemical characterization of their enzymatic specificity and efficiency has yet to be investigated in depth. Here a mass spectrometry enzymatic screen was implemented to assess substrate specificity, and an ATP coupled assay provided the quantitative kinetic profiles of these two homologous, eukaryotic enzymes.
View Article and Find Full Text PDFMicrob Cell Fact
November 2024
Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland.
The expanding field of site-specific ligation of proteins and peptides has catalyzed the development of novel methods that enhance molecular modification. Among these methods, enzymatic strategies have emerged as dominant due to their specificity and efficiency in modifying proteins under mild conditions. Asparaginyl endopeptidase is a group of cyclotide-producing cysteine proteases from plants.
View Article and Find Full Text PDFJACS Au
November 2024
Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!