Fabricating bioartificial bone graft ceramics retaining structural, mechanical, and bone induction properties akin to those of native stem-cell niches is a major challenge in the field of bone tissue engineering and regenerative medicine. Moreover, the developed materials are susceptible to microbial invasion leading to biomaterial-centered infections which might limit their clinical translation. Here, we successfully developed biomimetic porous scaffolds of polyurethane-reinforcedL-cysteine-anchored polyaniline capped strontium oxide nanoparticles to improve the scaffold's biocompatibility, osteo-regeneration, mechanical, and antibacterial properties. The engineered nanocomposite substrate PU/L-Cyst-SrO @PANI (0.4 wt%) significantly promotes bone repair and regeneration by modulating osteolysis and osteogenesis. ALP activity, collagen-I, ARS staining, as well as biomineralization of MC3T3-E1 cells, were used to assess the biocompatibility and cytocompatibility of the developed scaffolds in vitro, confirming that the scaffold provided a favorable microenvironment with a prominent effect on cell growth, proliferation, and differentiation. Furthermore, osteogenic protein markers were studied using qRT-PCR with expression levels of runt-related transcription factor 2 (RUNX2), secreted phosphoprotein 1 (Spp-I), and collagen type I (Col-I). The overall results suggest that PU/L-Cyst-SrO @PANI (0.4 wt%) scaffolds showed superior interfacial biocompatibility, antibacterial properties, load-bearing ability, and osteoinductivity as compared to pristine PU. Thus, prepared bioactive nanocomposite scaffolds perform as a promising biomaterial substrate for bone tissue regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2023.113152 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!