Both sleep and wake encephalograms (EEG) change over the lifespan. While prior studies have characterized age-related changes in the EEG, the datasets span a particular age group, or focused on sleep and wake macrostructure rather than the microstructure. Here, we present sex-stratified data from 3372 community-based or clinic-based otherwise neurologically and psychiatrically healthy participants ranging from 11 days to 80 years of age. We estimate age norms for key sleep and wake EEG parameters including absolute and relative powers in delta, theta, alpha, and sigma bands, as well as sleep spindle density, amplitude, duration, and frequency. To illustrate the potential use of the reference measures developed herein, we compare them to sleep EEG recordings from age-matched participants with Alzheimer's disease, severe sleep apnea, depression, osteoarthritis, and osteoporosis. Although the partially clinical nature of the datasets may bias the findings towards less normal and hence may underestimate pathology in practice, age-based EEG reference values enable objective screening of deviations from healthy aging among individuals with a variety of disorders that affect brain health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957961 | PMC |
http://dx.doi.org/10.1016/j.neurobiolaging.2023.01.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!