Most plants form mycorrhizal associations with mutualistic soil fungi. Through these partnerships, resources are exchanged including photosynthetically fixed carbon for fungal-acquired nutrients. Recently, it was shown that the diversity of associated fungi is greater than previously assumed, extending to Mucoromycotina fungi. These Mucoromycotina 'fine root endophytes' (MFRE) are widespread and generally co-colonise plant roots together with Glomeromycotina 'coarse' arbuscular mycorrhizal fungi (AMF). Until now, this co-occurrence has hindered the determination of the direct function of MFRE symbiosis. To overcome this major barrier, we developed new techniques for fungal isolation and culture and established the first monoxenic in vitro cultures of MFRE colonising a flowering plant, clover. Using radio- and stable-isotope tracers in these in vitro systems, we measured the transfer of P, N and C between MFRE hyphae and the host plant. Our results provide the first unequivocal evidence that MFRE fungi are nutritional mutualists with a flowering plant by showing that clover gained both N and P tracers directly from fungus in exchange for plant-fixed C in the absence of other micro-organisms. Our findings and methods pave the way for a new era in mycorrhizal research, firmly establishing MFRE as both mycorrhizal and functionally important in terrestrial ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952891 | PMC |
http://dx.doi.org/10.1111/nph.18630 | DOI Listing |
Nat Commun
December 2024
Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, the Netherlands.
The Auxin Response Factors (ARFs) family of transcription factors are the central mediators of auxin-triggered transcriptional regulation. Functionally different classes of extant ARFs operate as antagonistic auxin-dependent and -independent regulators. While part of the evolutionary trajectory to the present auxin response functions has been reconstructed, it is unclear how ARFs emerged, and how early diversification led to functionally different proteins.
View Article and Find Full Text PDFSci Rep
December 2024
The University of Trans-Disciplinary Health Sciences and Technology (TDU), 74/2, Post Attur via Yelahanka, Jarakabande Kaval, Bengaluru, 560 064, India.
Triphala is a traditional Ayurvedic herbal formulation composed of three fruits: amla (Phyllanthus emblica), bibhitaki (Terminalia bellerica), and haritaki (Terminalia chebula). Triphala is a potent Ayurvedic remedy that promotes digestion, detoxification, and overall wellness, while also providing antioxidant benefits through its trio of nutrient-rich fruits. In order to elucidate the individual contributions of the three ingredients of Triphala from molecular perspective, the individual ingredients were used for the untargeted LCMS/MS analysis.
View Article and Find Full Text PDFSci Rep
December 2024
College of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei, 430068, China.
The defoliation quality of mugwort defoliation equipment is an important factor to measure the defoliation efficiency, and the tensile properties of mugwort petiole will have an impact on the defoliation quality, such as the crushing rate and the abscission rate. In order to reduce the crushing rate and improve the abscission rate during mechanical harvesting of mugwort leaves, the tensile properties of mugwort petiole need to be studied. The tensile properties of mugwort petiole are closely related to its macroscopic and microscopic physicochemical parameters.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T3SS of Bradyrhizobium sp. DOA9 plays negative effects on Arachis hypogaea symbiosis.
View Article and Find Full Text PDFNat Commun
December 2024
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!