Rigidity control mechanism by turgor pressure in plants.

Sci Rep

Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, 060-8628, Japan.

Published: February 2023

The bodies of herbaceous plants are slender, thin, and soft. These plants support their bodies through the action of turgor pressure associated with their internal water stores. The purpose of this study was to apply the principles of structural mechanics to clarify the underlying mechanism of rigidity control that is responsible for turgor pressure in plants and the reason behind the self-supporting ability of herbaceous plants. We modeled a plant a horizontally oriented thin-walled cylindrical cantilever with closed ends enclosing a cavity filled with water that is acted on by its own weight and by internal tension generated through turgor pressure. We derived an equation describing the plant's consequent deflection, introducing a dimensionless parameter to express the decrease in deflection associated with the action of turgor pressure. We found that the mechanical and physical characteristics of herbaceous plants that would appear to be counter-productive from a superficial perspective increase the deflection decreasing effect of turgor pressure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899264PMC
http://dx.doi.org/10.1038/s41598-023-29294-5DOI Listing

Publication Analysis

Top Keywords

turgor pressure
24
herbaceous plants
12
rigidity control
8
pressure plants
8
action turgor
8
turgor
6
pressure
6
plants
6
control mechanism
4
mechanism turgor
4

Similar Publications

Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.

View Article and Find Full Text PDF

Metabolic analysis reveals the contribution of mechanosensitive channel MscM to extracellular release of glutamate in glycogen-deficient Synechococcus elongatus.

J Biosci Bioeng

December 2024

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan. Electronic address:

In bacteria, mechanosensitive channels mediate extracellular release of osmolytes, including glutamate, functioning as safety valves upon osmotic downshift. In cyanobacteria, the role of mechanosensitive channels has not been completely elucidated. Recently, the glycogen-deficient ΔglgC mutant of Synechococcus elongatus PCC 7942 was found to release glutamate extracellularly, giving rise to a hypothesis that the role of mechanosensitive channels in cyanobacteria is conserved.

View Article and Find Full Text PDF

Background: The entomopathogenic fungus (EPF) Metarhizium acridum, a typical filamentous fungus, has been utilized for the biological control of migratory locusts (Locusta migratoria manilensis). Fungal-specific transcription factors (TFs) play a crucial role in governing various cellular processes in fungi, although TFs with only the Fungal_trans domain remain poorly understood.

Results: In this study, we identified a unique fungal-specific TF in M.

View Article and Find Full Text PDF

Effect of osmotic pressure on membrane permeation through antimicrobial peptide-induced pores.

Biochem Biophys Res Commun

December 2024

Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan; Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka, 422-8529, Japan; Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan. Electronic address:

Most antimicrobial peptides (AMPs) induce membrane damage such as pore formation in bacterial cells, resulting in rapid cell death. On the other hand, bacterial cells have a large intracellular turgor pressure, i.e.

View Article and Find Full Text PDF

Several agriculturally valuable plants store their pollen in tube-like poricidal anthers, which release pollen through buzz pollination. In this process, bees rapidly vibrate the anther using their indirect flight muscles. The stiffness and resonant frequency of the anther are crucial for effective pollen release, yet the impact of turgor pressure on these properties is not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!