Based on the European Union Basic Safety Standards to protect people against exposure to ionizing radiation, establishing and addressing the reference levels for indoor radon concentrations is necessary. Therefore, the indoor radon concentration should be monitored and control in dwelling and workplaces. However, proper ventilation and sustainability are the major factors that influence how healthy the environment in a building is for its occupants. In this paper, the indoor radon distribution in a typical naturally ventilated room under two scenarios (when the door is closed and open) using the computational fluid dynamics (CFD) technique was studied. The CFD code ANSYS Fluent 2020 R1 based on the finite volume method was employed before the simulation results were compared with analytical calculations as well as passive and active measurements. The average radon concentration from the CFD simulation was found to be between 70.21 and 66.25 Bq m under closed and open-door conditions, respectively, at the desired ventilation rate of 1 ACH (Air Changes per Hour). Moreover, the highest concentrations of radon were measured close to the floor and the lowest values were recorded near to the inlet, resulting in the airflow velocity profile. The simulation results were in good agreement with the maxima of 19% and 7% compared to analytical calculations at different indoor air velocities in the open- and closed-door scenarios, respectively. The measured radon concentrations obtained by the active measurements also fitted well with the CFD results, for example, with a relative standard deviation of around 7% and 2% when measured by AlphaGUARD and RAD7 monitors at a height of 1.0 m above the ground in the open-door scenario. From the simulation results, the effective dose received by an individual from the indoor air of the workplace was also calculated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899222 | PMC |
http://dx.doi.org/10.1038/s41598-022-23642-7 | DOI Listing |
Radiat Prot Dosimetry
January 2025
Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada.
This study assesses the activity concentrations of the radionuclides 238U, 232Th, and 40K in soil samples collected from Wolaita Sodo town, located in the Southern Nations, Nationalities, and Peoples' (SNNP) Region, Ethiopia. A gamma-ray spectrometer equipped with a NaI(Tl) detector was used for the measurements. The concentrations of 238U, 232Th, and 40K varied from 3.
View Article and Find Full Text PDFEnviron Int
January 2025
Dipartimento di Geoscienze, Università di Padova, Padova, Italy.
Radon (Rn) is a radioactive gas with well-documented harmful effects; the World Health Organization has confirmed it as a cancerogenic for humans. These detrimental effects have prompted Europe to establish national reference levels to protect the exposed population. This is reflected in European directive 59/2013/EURATOM, which has been transposed into the national regulations of EU Member States.
View Article and Find Full Text PDFAppl Radiat Isot
March 2025
School of Applied Mathematics and Informatics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia.
The national radon surveys in Montenegro revealed that the highest annual average radon concentrations (C) in ground floors of dwellings and schools were found in a rural region characterized as a typical high-karst area. In this region, spanning approximately 800 km, C values in 9 houses and 16 schools ranged from 219 to 2494 Bq/m, with AM = 977 Bq/m. To investigate the causes of these elevated indoor radon concentrations, the following parameters were measured near the 25 surveyed buildings: soil humidity, electrical conductivity, pH, activity concentrations of Ra, U, U, Th and K, radon concentration in soil gas (c), soil permeability for radon gas (k), and gamma dose rate in the air.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02114.
Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.
Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.
Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.
Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!