Melasma is a common hyperpigmented skin condition that occurs on the face and other areas prone to light exposure, seriously affecting people's quality of life. Microneedle, a new type of transdermal drug delivery device, can significantly improve skin permeability. In this study, we designed and fabricated a polymer microneedle roller (PMR) using a mold hot pressing method, and established a mouse model of melasma induced by ultraviolet radiation. The dynamometer and insertion test of MNs into parafilm and skin of mice indicates that the MNs have sufficient mechanical properties to insert parafilm and skin of mice. The two methods (apply hydroquinone cream (HQC) directly and pre-treat with PMR before applying HQC) were used to treat melasma. From the results of skin surface observation, determination of superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in skin and liver tissues, histological observation, and skin Optical coherence tomography (OCT), we confirmed both the two methods had a therapeutic effect while the PMR pretreatment group exhibited a better therapeutic effect. In addition, there were statistical differences between the UV group (P < 0.05). Together these results indicated that the MNs may be promising in future clinical applications in improving the UV irradiation-induced pigmentation like melisma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2023.01.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!