Microorganisms carrying nosZ I and nosZ II share similar ecological niches in a subtropical coastal wetland.

Sci Total Environ

Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China. Electronic address:

Published: April 2023

Nitrous oxide (NO) reducers are the only known sink for NO and pivotal contributors to NO mitigation in terrestrial and water ecosystems. However, the niche preference of nosZ I and nosZ II carrying microorganisms, two divergent clades of NO reducers in coastal wetlands, is not yet well documented. In this study, we investigated the abundance, community structure and co-occurrence network of nosZ I and nosZ II carrying microorganisms and their driving factors at three depths in a subtropical coastal wetland with five plant species and a bare tidal flat. The taxonomic identities differed between nosZ I and nosZ II carrying microorganisms, with nosZ I sequences affiliated with Alphaproteobacteria and Betaproteobacteria while nosZ II sequences with Gemmatimonadetes, Verrucomicrobia, Gammaproteobacteria, and Chloroflexi. The abundances of nosZ I and nosZ II decreased with increasing soil depths, and were positively associated with salinity, total carbon (TC) and total nitrogen (TN). Random forest analysis showed that salinity was the strongest predictor for the abundances of nosZ I and nosZ II. Salinity, TC and TN were the major driving forces for the community structure of nosZ I and nosZ II carrying microorganisms. Moreover, co-occurrence analysis showed that 92.2 % of the links between nosZ I and nosZ II were positive, indicating that nosZ I and nosZ II carrying microorganisms likely shared similar ecological niches. Taken together, we provided new evidence that nosZ I and nosZ II carrying microorganisms shared similar ecological niches in a subtropical estuarine wetland, and identified salinity, TC and TN serving as the most important environmental driving forces. This study advances our understanding of the environmental adaptation and niche preference of nosZ I and nosZ II carrying microorganisms in coastal wetlands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162008DOI Listing

Publication Analysis

Top Keywords

nosz nosz
44
nosz carrying
28
carrying microorganisms
28
nosz
24
ecological niches
12
microorganisms
8
niches subtropical
8
subtropical coastal
8
coastal wetland
8
niche preference
8

Similar Publications

Distinct response of nitrogen metabolism to exogenous cadmium (Cd) in river sediments with and without Cd contamination history.

Water Res

January 2025

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

The role of metal resistance on nitrogen metabolism function and community resilience against Cd is important for elucidating the evolutionary dynamics of key ecological functions in river ecosystems. In this study, the response of nitrogen transforming function to Cd exposure in river sediments from the Yangtze River Basin with varying levels of heavy metal contamination history (Cd-contaminated and Cd-free sediments) was compared to understand how Cd influenced nitrogen metabolism under varying metal resistance conditions. The results showed that chronic and persistent Cd pollution of sediments caused an elevation of transport efflux metal resistance genes (MRGs) and a reduction in the uptake MRGs, leading to a stronger tolerance to Cd for Cd-contaminated sediment than Cd-free ones.

View Article and Find Full Text PDF

Impact of Biochar on Nitrogen-Cycling Functional Genes: A Comparative Study in Mollisol and Alkaline Soils.

Life (Basel)

December 2024

Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, Harbin University, Harbin 150086, China.

Biochar has gained considerable attention as a sustainable soil amendment due to its potential to enhance soil fertility and mitigate nitrogen (N) losses. This study aimed to investigate the effects of biochar application on the abundance of key N-cycling genes in Mollisol and alkaline soils, focusing on nitrification (AOA, AOB, and ) and denitrification (, , and ) processes. The experiment was conducted using soybean rhizosphere soil.

View Article and Find Full Text PDF

Simultaneous degradation of roxithromycin and nitrogen removal by Acinetobacter pittii TR1: Performances, pathways, and mechanisms.

J Environ Manage

January 2025

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China. Electronic address:

Pharmaceutical and aquaculture wastewater contains not only antibiotics but also high concentrations of nitrogen, but few studies have been conducted on bacteria that target this complex pollution for degradation. A novel heterotrophic nitrifying aerobic denitrifying (HN-AD) strain Acinetobacter pittii TR1 isolated from soil. When the C/N ratio was 20, the strain could degrade 50 mg/L roxithromycin (ROX) and the nitrogen removal rate was 96.

View Article and Find Full Text PDF

Understanding the performance and microbial succession in nitrogen removal using fermentation liquid as carbon source can provide a practical basis for treating low C/N ratio wastewater. In this study, three typical fermentation liquids of food waste (FW) enriched with lactic acid (LA), propionic acid (PA), and butyric acid (BA) were added to high ammonia and high salt (HAHS) wastewater treatment process. Results showed that effluent TN decreased from 50 mg/L to around 15 mg/L with the influent concentration around 1000 mg/L after adding fermentation liquid enriched with LA and PA.

View Article and Find Full Text PDF

Biotic factors shape the structure and dynamics of denitrifying communities within cyanobacterial aggregates.

Environ Res

January 2025

Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Center for Global Change and Ecological Forecasting, Institute of Eco-Chongming, Shanghai, China. Electronic address:

Eutrophication caused by human activities has severely impacted freshwater ecosystems, leading to harmful cyanobacterial blooms that threaten water quality and ecosystem stability. During blooms, denitrification is a key process for nitrogen removal, which can occur both in the sediment and in the waterbody mediated by cyanobacterial aggregate (CA)-associated microorganisms. In this study, the structure, dynamics and assembly mechanisms of CA-associated nirK-, nirS-, and nosZ-encoding denitrifying communities were investigated in the eutrophic Lake Taihu across the bloom season.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!