Engineered Platforms for Maturing Pluripotent Stem Cell-Derived Liver Cells for Disease Modeling.

Cell Mol Gastroenterol Hepatol

Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois. Electronic address:

Published: April 2023

Several liver diseases (eg, hepatitis B/C viruses, alcoholic/nonalcoholic fatty liver, malaria, monogenic diseases, and drug-induced liver injury) significantly impact global mortality and morbidity. Species-specific differences in liver functions limit the use of animals to fully elucidate/predict human outcomes; therefore, in vitro human liver models are used for basic and translational research to complement animal studies. However, primary human liver cells are in short supply and display donor-to-donor variability in viability/quality. In contrast, human hepatocyte-like cells (HLCs) differentiated from induced pluripotent stem cells and embryonic stem cells are a near infinite cell resource that retains the patient/donor's genetic background; however, conventional protocols yield immature phenotypes. HLC maturation can be significantly improved using advanced techniques, such as protein micropatterning to precisely control cell-cell interactions, controlled sized spheroids, organoids with multiple cell types and layers, 3-dimensional bioprinting to spatially control cell populations, microfluidic devices for automated nutrient exchange and to induce liver zonation via soluble factor gradients, and synthetic biology to genetically modify the HLCs to accelerate and enhance maturation. Here, we present design features and characterization for representative advanced HLC maturation platforms and then discuss HLC use for modeling various liver diseases. Lastly, we discuss desirable advances to move this field forward. We anticipate that with continued advances in this space, pluripotent stem cell-derived liver models will provide human-relevant data much earlier in preclinical drug development and reduce animal usage, help elucidate liver disease mechanisms for the discovery of efficacious and safe therapeutics, and be useful as cell-based therapies for patients suffering from end-stage liver failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10034210PMC
http://dx.doi.org/10.1016/j.jcmgh.2023.01.013DOI Listing

Publication Analysis

Top Keywords

pluripotent stem
12
liver
12
stem cell-derived
8
cell-derived liver
8
liver cells
8
modeling liver
8
liver diseases
8
human liver
8
liver models
8
stem cells
8

Similar Publications

Background: Extracellular vesicles are easily accessible in various biofluids and allow the assessment of disease-related changes in the proteome. This has made them a promising target for biomarker studies, especially in the field of neurodegeneration where access to diseased tissue is very limited. Genetic variants in the LRRK2 gene have been linked to both familial and sporadic forms of Parkinson's disease.

View Article and Find Full Text PDF

Due to global blood shortages and restricted donor blood storage, the focus has switched to the in vitro synthesis of red blood cells (RBCs) from induced pluripotent stem cells (iPSCs) as a potential solution. Many processes are required to synthesize RBCs from iPSCs, including the production of iPSCs from human or animal cells, differentiation of iPSCs into hematopoietic stem cells, culturing, and maturation of the hematopoietic stem cells (HSC) to make functional erythrocytes. Previous investigations on the in vitro production of erythrocytes have shown conflicting results.

View Article and Find Full Text PDF

Mortality and morbidity from cardiovascular diseases are common worldwide. In order to improve survival and quality of life for this patient population, extensive efforts are being made to establish effective therapeutic modalities. New treatment options are needed, it seems.

View Article and Find Full Text PDF

Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is characterized by dysfunction and loss of upper and lower motor neurons. Several studies have identified structural and functional alterations in the motor neurons before the manifestation of symptoms, yet the underlying cause of such alterations and how they contribute to the progressive degeneration of affected motor neuron networks remain unclear. Importantly, the short and long-term spatiotemporal dynamics of neuronal network activity make it challenging to discern how ALS-related network reconfigurations emerge and evolve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!