A novel homogeneous electrocatalytic system was constructed by current-assisted trace Co(II) activating PMS (ECP) to remove reactive blue 19 (RB19). More than 93 % of RB19 was rapidly removed with only a trace dose, and the PMS was 98.35 % utilized during the reaction. By exploring the active species and analyzing the PMS consumption, it was found that current strongly accelerated the Co(III)/Co(II) redox cycle by providing electrons to Co(III), and inhibited the side reaction thus improving the PMS utilization. Electric energy per order was very low, only 0.26 kWh·m. Radicals (SO) and non-radicals (Co(III), Co(IV) and O) participated in ECP system, in which SO was dominant. By excluding the other three precursors (PMS, •OH and O), the side reaction product SO was identified as the source of O in ECP system. Combining chelating agent EDTA and chemical probe PMSO, Co(IV) was considered formed by single and double charge transfer. Five degradation pathways of RB19 were proposed using mass spectrometry and DFT calculation. The ecotoxicity and mutagenicity of RB19 and its transformation products were predicted using software simulation. These studies provided an interesting insights into the synergistic Co(II)-PMS systems and offered a new strategy for electrochemical processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.130905 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
Generative artificial intelligence (AI) models trained on natural protein sequences have been used to design functional enzymes. However, their ability to predict individual reaction steps in enzyme catalysis remains unclear, limiting the potential use of sequence information for enzyme engineering. In this study, we demonstrated that sequence information can predict the rate of the S2 step of a haloalkane dehalogenase using a generative maximum-entropy (MaxEnt) model.
View Article and Find Full Text PDFJ Acquir Immune Defic Syndr
December 2024
Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA; and.
Background: Long-acting injectable (LAI) antiretroviral medications are as effective as daily oral antiretroviral therapy (ART) and offer discreet, less frequent dosing. LAIs may be ideal treatment options for people who experience challenges with adherence to daily oral ART, including mobile men living with HIV (MLHIV).
Methods: We conducted a qualitative substudy within two parent trials in 24 health facilities in Malawi that enrolled MLHIV ≥15 years not on ART.
Angew Chem Int Ed Engl
January 2025
KU Leuven: Katholieke Universiteit Leuven, Chemistry, BELGIUM.
Understanding the impact of oxidative modification on protein structure and functions is essential for developing therapeutic strategies to combat macromolecular damage and cell death. However, selectively inducing oxidative modifications in proteins remains challenging. Herein we demonstrate that [V6O13{(OCH2)3CCH2OH}2]2- (V6-OH) hybrid metal-oxo cluster can be used for selective protein oxidative cleavage and modifications.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Laboratory of Microbiology and Immunology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China.
Colorectal cancer (CRC) is one of the malignant tumors globally, with high morbidity and mortality rates. The mainstay treatment of CRC includes surgery, radiotherapy, and chemotherapy. However, these treatments are associated with a high recurrence rate, poor prognosis, and highly toxic side effects.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
Nitrilase is extensively applied across diverse sectors owing to its unique catalytic properties. Nevertheless, in industrial production, nitrilases often face issues such as low catalytic efficiency, limited substrate range, suboptimal selectivity, and side reaction products, which have garnered heightened attention. With the widespread recognition that the structure of enzymes has a direct impact on their catalytic properties, an increasing number of researchers are beginning to optimize the functional characteristics of nitrilases by modifying their structures, in order to meet specific industrial or biotechnology application needs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!