Mining Chromodoris quadricolor symbionts for biosynthesis of novel secondary metabolites.

Mar Genomics

Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt. Electronic address:

Published: April 2023

Many secondary metabolites with medicinal potential are produced by various animals, plants, and microorganisms. Because marine creatures have a greater proportion of unexplored biodiversity than their terrestrial counterparts, they have emerged as a key research focus for the discovery of natural product drugs. Several studies have revealed that bacteria isolated from Chromodoris quadricolor (C. quadricolor) have antibiotic and anticancer properties. In this study, meta-transcriptomics and meta-proteimic analysis were combined to identify biosynthetic gene clusters (BGCs) in the symbiotic bacteria of the C. quadricolor mantle. Symbiotic bacteria were separated from the host by differential pelleting, and then total RNA was extracted, purified, and sequenced. Meta-transcriptomic analysis was done using different natural product mining tools to identify biosynthetic transcript clusters (BTCs). Furthermore, proteins were extracted from the same cells and then analyzed by LC-MS. A meta-proteomic analysis was performed to find proteins that are translated from BCGs. Finally, only 227 proteins have been translated from 40,742 BTCs. The majority of these clusters were polyketide synthases (PKSs) with antibacterial activity. Ten novel potential metabolic clusters with the ability to produce antibiotics have been identified in Novosphingobium and Microbacteriaceae, including members of the ribosomal synthesized and post-translationally modified peptides (RiPPs), polyketide synthases, and others. We realized that using a meta-proteomic approach to identify BGCs that have already been translated makes it easier to concentrate on BGCs that are utilized by bacteria. The symbiotic bacteria associated with C. quadricolor could be a source of novel antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.margen.2023.101017DOI Listing

Publication Analysis

Top Keywords

symbiotic bacteria
12
chromodoris quadricolor
8
secondary metabolites
8
natural product
8
identify biosynthetic
8
proteins translated
8
polyketide synthases
8
quadricolor
5
bacteria
5
mining chromodoris
4

Similar Publications

This study aimed to achieve two main objectives: first, to determine whether the virulence factors of symbiotic bacteria of entomopathogenic nematodes (EPNs) against insect hosts are cell-associated or secreted, and to shed light on the underlying mechanisms of pathogenicity; and second, to identify and evaluate the standalone pathogenicity of symbiotic bacteria associated with entomopathogenic nematodes against Tenebrio molitor. Three bacterial species, Xenorhabdus nematophila (A41, SC, A18 and SF), Photorhabdus kayaii, and P. thracensis, were isolated and characterized via phylogenetic analysis of 16S-rRNA and gyrB genes.

View Article and Find Full Text PDF

Premise: Prairies are among the most threatened biomes due to changing patterns of climate and land use, yet information on genetic variation in key species that would inform conservation is often limited. We assessed evidence for the geographic scale of population-level variation in growth of two species of prairie clover and of their symbiotic associations with nitrogen-fixing bacteria.

Methods: Seed representing two species, Dalea candida and D.

View Article and Find Full Text PDF

Legume plants can interact with nitrogen-fixing rhizobia bacteria and arbuscular mycorrhizal fungi (AMF) simultaneously, forming a tripartite symbiotic association. Co-inoculation studies performed on a variety of legumes have shown that rhizobia and AMF influence each other when they co-occur in tripartite association and affect host plant nutrition and performance. Although single plant-microbe interactions have been extensively studied, our understanding in the field of tripartite interactions is insufficient and current knowledge cannot predict the symbiotic outcome, which appears to depend on many parameters.

View Article and Find Full Text PDF

Association between gut microbiota and short-chain fatty acids in children with obesity.

Sci Rep

January 2025

Department of Child Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, 100 Hongkong Road, Wuhan, 430016, Hubei, China.

The gut microbiome and its metabolites may be important role in regulating the pathogenesis of obesity. This study aimed to characterize the gut microbiome and short-chain fatty acid (SCFA) metabolome in obese children. This case-control study recruited children aged 7‒14 years and divided them into a normal group (NG) and an obese group (OG) based on their body mass index.

View Article and Find Full Text PDF
Article Synopsis
  • Gut bacteria, particularly Bacteroides, rely on breaking down complex sugars to survive in the intestines and possess multiple genetic pathways (PULs) for this process.
  • Researchers identified the RNA-binding protein RbpB and a group of noncoding RNAs (FopS) as crucial for regulating these pathways at the translation level.
  • Disruption of RbpB in Bacteroides thetaiotaomicron negatively affects its ability to colonize the mouse gut based on diet, highlighting how RNA regulation influences the bacteria's adaptation to nutrient changes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!