Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The survival of animals during periods of limited nutrients is dependent on the organism's ability to store lipids during times of nutrient abundance. However, the increased availability of food in modern western society has led to an excess storage of lipids resulting in metabolic diseases. To better understand the genes involved in regulating lipid storage, genome-wide RNAi screens were performed in cultured Drosophila cells and one group of genes identified includes mRNA splicing factor genes. Our lab has previously shown that a group of splicing factors important for intron/exon border recognition known as SR proteins are involved in controlling lipid storage in Drosophila; however, how these SR proteins are regulated to control lipid storage is not fully understood. Here, we focus on two SR protein kinases (SRPKs) in Drosophila: SRPK and SRPK79D. Decreasing the expression of these genes specifically in the adult fat body using RNAi resulted in lower levels of triglycerides and this is due to a decrease in the amount of fat stored per cell, despite having more fat cells, when compared to control flies. Decreasing SRPK and SRPK79D levels in the fat body leads to altered splicing of the β-oxidation gene, carnitine palmitoyltransferase 1 (CPT1), resulting in increased production of a more active enzyme, which would increase lipid breakdown and be consistent with the lean phenotype observed in these flies. In addition, flies with decreased SRPK and SRPK79D levels in their fat bodies eat less, which may also contribute to the decreased triglyceride phenotype. Together, these findings provide evidence to support that lipid storage is controlled by the phosphorylation of factors involved in mRNA splicing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2023.01.093 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!