Currently research on microplastics in the environment focuses on non-degradable microplastics with little attention to research on degradable microplastics. This study involved a 400-day experiment in a simulated lake environment of three degradable microplastics, poly(ε-caprolactone) (PCL), polybutylene succinate (PBS), and poly(butylene adipate terephthalate) (PBAT) at the sediment water interface. Results showed that (1) for the three microplastics, Cd concentration showed a large change from 0 to 20 mm in the water above the sediment interface; the adsorption of Cd, Pb, and Cu in a diffusive gradients thin film (DGT) device are the highest in PBAT micro plastic, followed by PCL and then PBS. (2) Diffuse flux (J) of the three degradable microplastics indicated that Cu, Cd, and Pb in the sediments come from the overlying water that was added to the simulation experiment. (3) Fourier transform infra-red spectroscopy (FTIR) for investigating the adsorption capacity of Cu, Cd, and Pb in the three degradable microplastics showed the absorption peak intensity increased and widened, and some adsorption sites changed. (4) Correlation analysis showed that the factors which most influenced diffusion flux for both water and sediments are oxidation-reduction potential (ORP), followed by organic matter (OM), pH, and electrical conductivity (EC).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-24172-5 | DOI Listing |
Chemosphere
January 2025
TNO Environmental Modelling, Sensing and Analysis, Princetonlaan 6-8, 3584 CB, Utrecht, the Netherlands. Electronic address:
Tyre and road wear particles (TRWPs) are estimated to be the largest source of microplastics in the environment and due to the intrinsic use of tyres in our society this will continue to grow. Understanding their degradation mechanisms and subsequent accumulation over time is important to gain insights into the fate and impact of these particles in the environment. Accelerated UV-ageing was performed on cryomilled tyre tread particles and TRWPs from a road simulator to investigate the abiotic degradation of rubber.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:
Biodegradable microplastics (BMPs), which form as biodegradable plastics degrade in agricultural settings, may influence plant growth and soil health. This study investigates the effects of BMPs on tomato growth and the microbial mechanisms involved. A greenhouse experiment applied BMPs-polyhydroxyalkanoate (PHA), polylactic acid (PLA), poly(butylene succinate-co-butylene adipate) (PBSA), and poly(butylene-adipate-co-terephthalate) (PBAT)-to tomato plants.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Engineering Research Center of Biocontrol, Ministry of Education Guangdong Province, South China Agricultural University, Guangzhou 510640, China. Electronic address:
Microplastics have evolved as widespread contaminants in terrestrial and aquatic environments, raising significant environmental concerns due to their persistence and bioaccumulation. In this study, we investigated the toxicity of polyethylene microplastics (PE-MPs) on the agricultural insect, Spodoptera frugiperda. Maize leaves containing three sizes (0.
View Article and Find Full Text PDFSci Adv
January 2025
State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
Human health is being threatened by environmental microplastic (MP) pollution. MPs were detected in the bloodstream and multiple tissues of humans, disrupting the regular physiological processes of organs. Nanoscale plastics can breach the blood-brain barrier, leading to neurotoxic effects.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China.
Pesticides and plastics have brought convenience to agricultural production and daily life, but they have also led to environmental pollution through residual chemicals. Emamectin benzoate (EMB) is among the most widely used insecticides, which can cause environmental pollution and harm the health of organisms. Additionally, microplastics (MPs), a relatively new type of pollutant, not only are increasing in residual amounts within water bodies and aquatic organisms but also exacerbate pollution by adsorbing other pollutants, leading to a mixed pollution scenario.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!