Combination of Cetylpyridinium Chloride and Chlorhexidine Acetate: A Promising Candidate for Rapid Killing of Gram-Positive/Gram-Negative Bacteria and Fungi.

Curr Microbiol

Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences; Department of Pathogenic Biology, School of Basic Medicine, Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China.

Published: February 2023

AI Article Synopsis

Article Abstract

Combined use of the present antimicrobial drugs has been proved to be an alternative approach for antimicrobial agents' development since the co-existed of the drugs working in different mechanism have been demonstrated potentially enhance their antimicrobial activity. In this work, antibacterial and antifungal activity of the cetylpyridinium chloride (CPC)/chlorhexidine acetate (CHA) combination was evaluated for the first time, while a universal concentration for the rapid killing of gram-positive/gram-negative bacteria and fungi was also proposed. The minimum inhibitory concentrations (MIC) of CPC and CHA used alone or in combination were first measured, showing that the combined treatment decreased the MIC against tested gram-positive/gram-negative bacteria and fungi to 1/8-1/2. Growth curve assays demonstrated CPC and CHA had dynamic combined effects against the tested microorganisms at the concentration equal to MIC. Besides, combined use of these two drugs could also enhance their biocidal activity, which was illustrated by fluorescence microscopy and SEM images, as well as soluble protein measurement. More importantly, in vitro acute eye and skin irritation tests showed short-term contact with CPC/CHA combination would not cause any damage to mammalian mucosa and skin. In a word, CPC/CHA combination exhibited broad-spectrum antibacterial and antifungal activity against tested gram-positive/gram-negative bacteria and fungi while without any acute irritation to mammalian mucosa and skin, providing a new perspective on the selection of personal disinfectants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9899061PMC
http://dx.doi.org/10.1007/s00284-023-03198-zDOI Listing

Publication Analysis

Top Keywords

gram-positive/gram-negative bacteria
16
bacteria fungi
16
cetylpyridinium chloride
8
rapid killing
8
killing gram-positive/gram-negative
8
antibacterial antifungal
8
antifungal activity
8
cha combination
8
cpc cha
8
tested gram-positive/gram-negative
8

Similar Publications

Aminoglycosides are one of the first classes of natural antibiotics which have not lost relevance due to their broad spectrum of action against Gram-positive, Gram-negative bacteria and mycobacteria. The high growth rate of antimicrobial resistance (AMR) together with the severe side effects of aminoglycosides increase the importance of developing improved semisynthetic derivatives. In this work, we proposed a synthetic route to new tobramycin derivatives modified at the 6″-position with aminoalkylamine or guanidinoalkylamine residues.

View Article and Find Full Text PDF

In silico bioprospecting of receptors for Oligoventin: An antimicrobial peptide isolated from spider eggs of Phoneutria nigriventer.

Colloids Surf B Biointerfaces

April 2025

Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling - CeT-ICS/CEPID, Butantan Institute São Paulo, São Paulo, SP CEP 05503-900, Brazil; Postgraduate Program Interunits in Biotechnology, USP/IPT/IBU, São Paulo, SP, Brazil. Electronic address:

Background: Irresponsible and wholesale use of antimicrobial agents is the principal cause of the emergence of strains of resistant microorganisms to traditional drugs. Oligoventin is a neutral peptide isolated from spider eggs of Phoneutria nigriventer, with antimicrobial activity against Gram-positive, Gram-negative, and yeast organisms. However, the molecular target and pathways of antimicrobial activity are still unknown.

View Article and Find Full Text PDF

Antimicrobial resistance remains a global issue, hindering the control of bacterial infections. This study examined the antimicrobial properties of 2,3-N,N-diphenyl quinoxaline derivatives against Gram-positive, Gram-negative, and Mycobacterium species. Two quinoxaline derivatives (compounds 25 and 31) exhibited significant activity against most strains of Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis tested, with MIC values ranging from 0.

View Article and Find Full Text PDF

This study aimed to develop and evaluate hydrogels containing a cyclodextrin complex with clove essential oil and other free volatile oils with antimicrobial properties (tea tree and rosemary essential oils), focusing on their pharmaco-technical and rheological characteristics. The formulations varied in the Carbopol 940 (a hydrophilic polymer) and volatile oils' concentrations. Rheological analysis indicated that the gels displayed pseudoplastic behavior, with the flow index (n) values below 1, ensuring appropriate consistency and handling.

View Article and Find Full Text PDF

Bacterial infection poses a serious threat to human life due to the rapidly growing resistance of bacteria to antibacterial drugs, which is a significant public health issue. This study was focused on the design and synthesis of a new series of 25 analogues bearing a 5-cyano-6-oxo-4-substituted phenyl-1,6-dihydropyrimidine scaffold hybridized with different substituted benzenesulfonamides through the thioacetamide linker . The antimicrobial activity of the new molecules was studied against various Gram-positive, Gram-negative, and fungal strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!