Halo-fluoresceins are widely used in cell and tissue staining, intracellular sensing, and photodynamic therapy, but their notorious photo-instability and pH dependence restrict their applications, especially in long-term visible light exposure and acidic environments. To overcome these limitations, here a strategy is proposed of conjugating chitosan with the carboxyl group of halo-fluorescein (CS-halofluorescein). The cross-linked polymer chains and the hydrogen-bonding networks of chitosan help shielding out O from direct attacking the encapsulated halo-fluoresceins, leading to a two orders of magnitude lower photobleaching rate. Meanwhile, the condensation of primary amines of chitosan with the carboxyl group on halo-fluorescein blocks the pH-dependent intramolecular spirocyclization, leading to pH-inert fluorescein derivatives. The greatly improved photostability and pH inertness of CS-halofluoresceins can be harvested for aerobic photoredox synthesis and photodynamic bacteria inactivation in extremely acidic media. Moreover, food additive nature of chitosan and erythrosine (TIF) and excellent film-forming property of chitosan allow coating-based light-assisted preservation of perishable fruits, leading to appreciably extended shelf life of fruits (e.g., perishable strawberry, rt: > 3 days; 4 °C: > 5 days).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202210956 | DOI Listing |
Int J Biol Macromol
January 2025
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China. Electronic address:
Microplastic contamination of low-density polyethylene mulch and nutrient loss from fertilizers present significant challenges in the crop-growing. In this study, the focus was on creating a biodegradable film that combines the advantages of plastic film, thermal insulation and water retention, as well as the controlled release of fertilizer. A key innovation was the efficient introduction of low molecular weight and low dispersibility of poplar lignin into chitosan and polyvinyl alcohol matrices.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Infectious Disease Department, Hangzhou First People's Hospital Tonglu Hospital, Hangzhou, Zhejiang, China.
This study synthesizes a novel three-dimensional (3D) porous coordination polymer (CP), {[Co(L)₀.₅(H₂O)]·NMP·H₂O} (1), via a solvothermal method in a mixed solvent of water and NMP (1-methyl-2-pyrrolidinone), reacting Co(II) ions with H₄L (1,4-bis(5,6-carboxybenzimidazolylmethyl)benzene). The CP exhibits unique fluorescence properties, emitting at 420 nm under UV light excitation at 350 nm, and serves as a carrier for Mesalazine (MSZ) in therapeutic applications.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China. Electronic address:
Wearable microneedle array (MNA) based electrochemical sensors have gained increasing attention for their capability to analyze biomarkers in the interstitial fluid (ISF), enabling noninvasive, continuous monitoring of health parameters. However, challenges such as nonspecific adsorption of biomolecules on the sensor surfaces and the risk of infection at the microneedle penetration sites hinder their practical application. Herein, a wearable dual-layer microneedle patch was prepared to overcome these issues by integrating an antimicrobial microneedle layer with an antifouling sensing layer.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
Chitosan is generally considered to be a procoagulant effect, which may cause adverse phenomena such as blood clotting when used in small-diameter vascular grafts. However, it also shows good biocompatibility and anti-inflammatory properties, which can facilitate vascular reconstruction. Therefore, it is significant to transition the effect of chitosan from coagulation promotion to antiplatelet while still harnessing its bioactivity.
View Article and Find Full Text PDFACS Nano
January 2025
National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.
Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!