It is important to regulate the concentration of reactive oxygen species (ROS) in cells since they play important roles in metabolism. Thus, developing nanoreagents to control the ROS is critical. Herein, tellurium-doped carbon quantum dots (Te-CDs) were developed by a simple and efficient hydrothermal method, which can scavenge HO to protect cells under ambient condition, but generate ·OH under 808 nm irradiation as photodynamic application. This contribution presented a kind of novel CDs with dual-functions, which can potentially regulate ROS under different conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scib.2020.05.021 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain.
Lithium-sulfur batteries (LSBs) are among the most promising next-generation energy storage technologies. However, a slow Li-S reaction kinetics at the LSB cathode limit their energy and power densities. To address these challenges, this study introduces an anionic-doped transition metal chalcogenide as an effective catalyst to accelerate the Li-S reaction.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2022
School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, China; National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210046, China.
Pathogenic bacteria-infected wound healing faces challenges even though many advanced antibiotics and antibacterial nanoagents have been developed. Herein, we established a two-dimensional antibacterial nanoplatform with synergistic photothermal therapy (PTT) and photodynamic therapy (PDT) antibacterial capabilities mediated by a single 808 nm laser irradiation. The nanoplatform is constructed by combining black phosphorus (BP) obtained by liquid phase exfoliation and hydrothermally prepared tellurium-doped carbon quantum dots (CQDs) prepared by electrostatic interaction.
View Article and Find Full Text PDFDalton Trans
July 2021
Global GET-Future Laboratory & Department of Advanced Materials Chemistry, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.
A tellurium-doped carbon nanomaterial (Te-MC(P)) was newly developed by the soft-templated carbonization of the PAN-b-PBA copolymer with poly(3-hexyltellurophene). Te-MC(P) was characterized with various characterization methods, including the nitrogen sorption isotherm measurement (BET), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS), which reveal that the Te atoms are homogeneously dispersed in the three-dimensional hierarchical, graphite-like mesoporous carbon matrix with a Te doping level of 0.27 atom %.
View Article and Find Full Text PDFRSC Adv
February 2021
Global GET-Future Laboratory, Department of Advanced Materials Chemistry, Korea University 2511 Sejong-ro Sejong 339-700 Korea
Tellurium-doped mesoporous carbon composite materials (Te/NMC) have been prepared by a facile intercalation method in the presence of nitrogen-doped mesoporous carbon (NMC) with tellurium powder, for the first time. The effects of the co-doped N and Te in the mesoporous carbon matrix on the physical/chemical properties and capacitance performances were investigated the use of various characterization methods and electrochemical studies. The as-prepared NMC and Te/NMC materials were found to mainly be composed of mesopores and maintained the 3D hierarchical graphite-like structure with lots of defect sites.
View Article and Find Full Text PDFSci Rep
December 2020
MINAR Cancer Hospital, Pakistan Atomic Energy Commission, Islamabad, Pakistan.
The tellurium doped zinc imidazole framework (Te@ZIF-8) is prepared by a two-step hydrothermal strategy for the electrochemical sensing of hydrogen peroxide. Material is characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The electrochemical characterization of the MOF modified electrode is done by a three-electrode system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!