Red propolis, originary from Northeast Brazil, has a unique composition and a great commercial interest. However, due to the presence of ethanol and its remarkable sensory characteristic, its application in food products is challenging. Thus, the aim of this work was to microencapsulate the red propolis extract by spray-drying, spray-chilling, and combining both techniques. The particles loaded with propolis extracts were characterised and evaluated according to the stability of phenolic compounds, flavonoids and formononetin, during 60 days of storage. In addition, the formononetin release was also monitored during the oral, gastric, and intestinal phases in the in vitro digestion process. All produced particles presented matrix-type with size, distribution, shape, hygroscopicity, and dispersibility parameters that varied according to the carrier and encapsulation process applied. The techniques used to fabricate the particles efficiently obtained powdered propolis extract and protected the extract's bioactive compounds, total flavonoids and formononetin throughout the analysed period. The gastrointestinal release study presented distinctive releases in all phases (oral, gastric, and intestinal). The spray-dried particles, for example, released formononetin mainly in the oral stage. While the spray-chilled particles were primarily released in the intestinal phase, and coated particles were released gradually throughout the assay, reaching maximum relief in the intestinal phase. In conclusion, using microencapsulation techniques by spray-drying, spray-chilling, and their combination developed particles with different levels of protection during storage, releases and characteristics, which resulted in a range of possible applications in the food, feed, cosmetic, and pharmaceutical industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2022.112423 | DOI Listing |
ACS Omega
January 2025
School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14440-903, Brazil.
The demand for food production has been growing exponentially due to the increase in the global population. Innovative approaches to enhance agricultural productivity have been explored, including the new applications of nanoparticles in agriculture. The nanoparticle application in agriculture can generate environmental and human health risks since nanoparticles can contaminate the soil and inevitably reach groundwater, potentially causing toxicity in aquatic organisms.
View Article and Find Full Text PDFMolecules
January 2025
Foodomics Laboratory, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
Propolis is a valuable natural resource for extracting various beneficial compounds. This study explores a sustainable extraction approach for Brazilian green propolis. First, supercritical fluid extraction (SFE) process parameters were optimized (co-solvent: 21.
View Article and Find Full Text PDFPeerJ
December 2024
Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA, United States.
Background: Propolis is a natural substance produced by honeybees that has various biological properties including, anti-inflammatory, antioxidant and antimicrobial properties. Although previous studies have evaluated the antimicrobial effects of propolis in dentistry, its effects on dental pulp stem cell (DPSC) viability, migration, and differentiation are yet not well understood. The objective of this study was to investigate the effects of Chinese propolis on viability/proliferation, migration, differentiation and cytokine expression in DPSCs.
View Article and Find Full Text PDFFitoterapia
December 2024
National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38655, USA; Department of Biomolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA. Electronic address:
Brazilian Red Propolis (BRP) is a natural product known for its rich chemical composition and therapeutic potential. This study investigates the phytochemical profile and evaluates the cytotoxic, antiplasmodial, and antimicrobial properties of red propolis extract and its isolated compounds vestitol (1), neovestitol (2), medicarpin (3), 7-O-methylvestitol (4), and oblongifolin B (5). The extract showed selective cytotoxicity against cancer cell lines (IC: 16-39 μg/mL).
View Article and Find Full Text PDFPLoS One
November 2024
Research and Laboratories Sector, National Drug and Cosmetic Control Laboratories (NDCCL), Saudi Food and Drug Authority, Riyadh, Saudi Arabia.
Recently, the growth in the consumption of functional foods with potential nutritional and health benefits revealed rapid progress in phytochemical analysis to assure quality and profile the chemical composition. Bee propolis, a gummy exudate produced in beehives after harvesting from different plant species and showed to contain bioactive secondary metabolites with biological importance. The main goal of the current study is to profile the chemical composition of red propolis samples from the Brazilian stingless bee Tetragonula biroi for the first time using HPLC-UV-ELSD and NMR analysis for assignment of the abundant metabolites' classes as well as extraction and isolation of the major compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!