Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Grapes' growth and processing conditions have various effects on pesticides with different physicochemical properties. Therefore, it is important for the healthy human diet to investigate pesticide residue behavior. To explore the relationship between pesticide residue behavior and physicochemical properties, the distribution of ten pesticides and one metabolite on grape peel and pulp was examined and the results showed that pesticides with low octanol-water partition coefficient (Kow) were more likely to be transferred to the pulp as the harvest interval increases. The removal methods were ranked according to pesticide removal effectiveness as follows: peeling > ozone water washing > tap water washing. Furthermore, the logKow played a key role in pesticide transfer rates during the juicing and winemaking. Notably, drying was the process of increasing pesticide residues. Additionally, the prediction models for the PFs of the pesticides in the juicing and winemaking processes were constructed as PFj = 0.952-0.116logKow (r = 0.886) and PFw = 0.736-0.143logKow (r = 0.959) by stepwise regression analysis. The prediction models recommended that Kow could be used to predict pesticide residues in grape juice and wine, which can predict the effect of pesticide physicochemical properties on PFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2022.112398 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!