Bioactivities and green advanced extraction technologies of ginger oleoresin extracts: A review.

Food Res Int

Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang, Selangor, Malaysia; Supercritical Fluid Center (SFC), Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang, Selangor, Malaysia. Electronic address:

Published: February 2023

Zingiber officinale Roscoe is an excellent source of bioactive compounds, mainly gingerols and shogaols compounds, that associated with various bioactivities including antioxidant, anticancer, anti-inflammatory, antimicrobial, and antibiofilm. Zingiber officinale Roscoe found its application in the food, pharmaceutical, and cosmeceutical industries. The demand for a high quality of ginger oleoresin extracts based on the contents of gingerols and shogaols compounds for a health-benefit has dramatically increased. Various extraction techniques, including the conventional and advanced extraction techniques for gingerols and shogaols have been reported based on the literature data from 2012 to 2022. The present review examines the functional composition and bioactivities of Zingiber officinale Roscoe and the advanced green extraction technologies. Some variations in the quantity and quality of gingerols and shogaols compounds are because of the extraction method employed. This review provides a depth discussion of the various green advanced extraction technologies and the influences of process variables on the performance of the extraction process. Lower temperature with a short exposure time such as ultrasound-assisted and enzyme-assisted extraction, will lead to high quality of extracts with high content of 6-gingerol. High thermal processing, such as microwave-assisted and pressurized liquid extraction, will produce higher 6-shogaol. Meanwhile, supercritical fluid extraction promotes high quality and the safety of extracts by using non-toxic CO. In addition, challenges and future prospects of the extraction of ginger oleoresin have been identified and discussed. The emerging green extraction methods and technologies show promising results with less energy input and higher quality extracts than conventional extraction methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2022.112283DOI Listing

Publication Analysis

Top Keywords

gingerols shogaols
16
extraction
13
advanced extraction
12
extraction technologies
12
ginger oleoresin
12
zingiber officinale
12
officinale roscoe
12
shogaols compounds
12
high quality
12
green advanced
8

Similar Publications

The polyphenol-starch complex has become a hot research topic since it is evident that this modification method can alter the physicochemical properties of starch as well as improve its nutritional value. This work aimed to evaluate the effect of ginger polyphenol gingerols (GNs) and shogaols (SNs) on the structure of starch with different amylose content (WCS, CS, G56, G80). Textural and rheological results indicated that GNs and SNs had more pronounced inhibitory retrogradation effects for relative low-level amylose starches (WCS and CS) compared to relative high-level amylose starches (G56 and G80).

View Article and Find Full Text PDF

The rising prevalence of neurodegenerative disorders underscores the urgent need for effective interventions to prevent neuronal cell death. This study evaluates the neuroprotective potential of phytosome-encapsulated 6-gingerol- and 6-shogaol-enriched extracts from Roscoe (6GS), bioactive compounds renowned for their antioxidant and anti-inflammatory properties. The novel phytosome encapsulation technology employed enhances the bioavailability and stability of these compounds, offering superior therapeutic potential compared to conventional formulations.

View Article and Find Full Text PDF

A Combined Extract from and Mitigates PM-Induced Respiratory Damage by NF-κB/TGF-β1 Pathway.

Antioxidants (Basel)

December 2024

Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea.

This research evaluated the protective role of a combined extract of and (DBZO) against respiratory dysfunction caused by particulate matter (PM) exposure in BALB/c mice. The bioactive compounds identified in the DBZO are catechin, astragalin, 6-gingerol, 8-gingerol, and 6-shogaol. DBZO ameliorated cell viability and reactive oxygen species (ROS) production in PM-stimulated A549 and RPMI 2650 cells.

View Article and Find Full Text PDF

Background: Gut dysbiosis, chronic diseases, and microbial recurrent infections concerns have driven the researchers to explore phytochemicals from medicinal and food homologous plants to modulate gut microbiota, mitigate diseases, and inhibit pathogens. Gingerols have attracted attention as therapeutic agents due to their diverse biological activities like gut microbiome regulation, gastro-protective, anti-inflammatory, anti-microbial, and anti-oxidative effects.

Purpose: This review aimed to summarize the gingerols health-promoting potential, specifically focusing on the regulation of gut microbiome, attenuation of disease symptoms, mechanisms of action, and signaling pathways involved.

View Article and Find Full Text PDF

Plant-derived extracellular vesicles (PEVs) have been regarded as a superior source for nanomedicine and drug delivery systems. Nevertheless, their clinical translation is hindered by the lack of clarity and even contradiction in their biomedical applications. Herein, we conducted a comprehensive compositional analysis of four commonly used PEVs to fully understand their functional lipid contents and assess their potential therapeutic applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!