Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by dopaminergic neuronal damage. In this study, three tea extracts from Hadong, Korea, were evaluated in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity damage model (C57BL/6 mice) for their therapeutic effects against PD: green tea (GT), semi-fermented tea (SFT), and fermented tea (FT). Theaflavin content in the teas increased but catechin content decreased with the degree of fermentation. In addition, SFT showed the highest theanine and γ-aminobutyric acid contents. SFT at a concentration of 25 μg/mL showed the highest activity in the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay among all samples. Furthermore, the 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid radical scavenging activity of 25 μg/mL SFT was higher than that of l-ascorbic acid. Fermented tea suppressed the expression of inflammatory cytokines, such as interleukin-6, tumor necrosis factor-alpha, inducible nitric oxide synthase, cyclooxygenase-2, and macrophage-1, as well as inhibited overexpression of apoptotic signals, including p-53, cleaved caspase-3, and poly (ADP-ribose) polymerase-1. Moreover, GT, SFT, and FT regulated the MPTP-induced oxidative stress-related factors, including superoxide dismutase, glutathione-S-transferase, and nicotinamide adenine dinucleotide phosphate oxidase 4. Fermented tea also alleviated MPTP-induced behavioral impairment and dopaminergic neuronal damage and reduced α-synuclein levels. These results indicate that fermented tea is effective for the treatment of neuro-inflammatory, neuro-apoptotic, and neuro-oxidative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2022.112133DOI Listing

Publication Analysis

Top Keywords

fermented tea
20
tea
8
parkinson's disease
8
dopaminergic neuronal
8
neuronal damage
8
radical scavenging
8
fermented
5
sft
5
neuroprotective effects
4
effects fermented
4

Similar Publications

Development of kombucha beverage with jackfruit leaves (Artocarpus heterophyllus Lam) and/or soursop leaves (Annona muricata).

Food Chem

December 2024

Tecnológico Nacional de México, Instituto Tecnológico de Tepic; Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico #2595 Col. Frac. Lagos del Country, C.P., Tepic 63175, Nayarit, Mexico. Electronic address:

Kombucha is a fermented beverage with health effects, made mainly from green tea and black tea; however, it can also be made from other leaves such as those of jackfruit and soursop, which are not used even though they have been reported to have positive health effects. Due to the above, in this work "kombucha" beverages based on jackfruit and/or soursop leaves were developed and analyzed to take advantage of these by-products. It was found that fermentation produced significant changes, being the optimal kombucha formulation green tea with soursop leaves (GTKS), obtaining a higher content of antioxidant compounds (mainly catechin, rutin and shikimic acid) and greater ferric reducing antioxidant power (FRAP) (1.

View Article and Find Full Text PDF

The use of alternative ingredients as supplements to or blends with kombucha tea to improve organoleptic properties and health effects has recently increased. Indian gooseberry fruit is among the most promising alternative raw materials for producing functional kombucha since the berries contain several beneficial substances. In this study, the production of functional kombucha beverages from fusions of black tea and Indian gooseberry fruit homogenate (IGH) was investigated, and the chemical and biological properties of kombucha products were evaluated and compared with those of traditional black tea kombucha products.

View Article and Find Full Text PDF

Kombucha is fermented and produced with a biofilm called a symbiotic culture of bacteria and yeast, which is drunk all over the world for its beneficial effects on human health and energy levels. The metagenomic study of kombucha frequently detected microorganisms in proteobacteria, firmicutes, and actinobacteria. And also, yeast and fungi are Ascomycota and Basidiomycota is present in green leaf and sugarcane juice fermented kombucha.

View Article and Find Full Text PDF

Insight into how fermentation might contribute to the distinctiveness of Australian coffee.

Food Chem

December 2024

School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia. Electronic address:

Article Synopsis
  • The study focused on three coffee estates in New South Wales, aiming to enhance the flavor profiles of Australian coffee through different processing methods (wet fermented and non-fermented).
  • Researchers analyzed 33 volatile compounds in both green and roasted coffee beans, identifying various esters, alcohols, acids, and more, while also assessing sensory characteristics like appearance and flavor.
  • Findings indicated that wet fermentation improved certain desirable aromas and flavors in coffee, particularly enhancing notes associated with premium coffees, such as "black tea leaves" and "dark chocolate."
View Article and Find Full Text PDF

Analysis of changes in flavor characteristics of congou black tea at different fermentation degrees under industrial production conditions using flavor compound weighted network co-expression method.

Food Chem

December 2024

National Key Laboratory of Germplasm Innoavtion and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, PR China. Electronic address:

Fermentation is a key process in Congou black tea, but there is limited research on the changes in flavor factors and their interrelationships during different fermentation stages under industrial production. This study applies sensory evaluation and metabolomics techniques to explore the interactions between flavors. Sensory evaluation indicated that the 4-h fermented sample exhibited the best overall performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!