A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Explainable uncertainty quantifications for deep learning-based molecular property prediction. | LitMetric

Explainable uncertainty quantifications for deep learning-based molecular property prediction.

J Cheminform

Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan.

Published: February 2023

Quantifying uncertainty in machine learning is important in new research areas with scarce high-quality data. In this work, we develop an explainable uncertainty quantification method for deep learning-based molecular property prediction. This method can capture aleatoric and epistemic uncertainties separately and attribute the uncertainties to atoms present in the molecule. The atom-based uncertainty method provides an extra layer of chemical insight to the estimated uncertainties, i.e., one can analyze individual atomic uncertainty values to diagnose the chemical component that introduces uncertainty to the prediction. Our experiments suggest that atomic uncertainty can detect unseen chemical structures and identify chemical species whose data are potentially associated with significant noise. Furthermore, we propose a post-hoc calibration method to refine the uncertainty quantified by ensemble models for better confidence interval estimates. This work improves uncertainty calibration and provides a framework for assessing whether and why a prediction should be considered unreliable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9898940PMC
http://dx.doi.org/10.1186/s13321-023-00682-3DOI Listing

Publication Analysis

Top Keywords

explainable uncertainty
8
deep learning-based
8
learning-based molecular
8
molecular property
8
uncertainty
7
uncertainty quantifications
4
quantifications deep
4
property prediction
4
prediction quantifying
4
quantifying uncertainty
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!