Vanilloids, including capsaicin and eugenol, are ligands of transient receptor potential channel vanilloid subfamily member 1 (TRPV1). Prolonged treatment with vanilloids triggered the desensitization of TRPV1, leading to analgesic or antinociceptive effects. Caenorhabditis elegans (C. elegans) is a model organism expressing vanilloid receptor orthologs (e.g., OSM-9 and OCR-2) that are associated with behavioral and physiological processes, including sensory transduction. We have shown that capsaicin and eugenol hamper the nocifensive response to noxious heat in C. elegans. The objective of this study was to perform proteomics to identify proteins and pathways responsible for the induced phenotype and to identify capsaicin and eugenol targets using a thermal proteome profiling (TPP) strategy. The results indicated hierarchical differences following Reactome Pathway enrichment analyses between capsaicin- and eugenol-treated nematodes. However, both treated groups were associated mainly with signal transduction pathways, energy generation, biosynthesis and structural processes. Wnt signaling, a specific signal transduction pathway, is involved following treatment with both molecules. Wnt signaling pathway is noticeably associated with pain. The TPP results show that capsaicin and eugenol target OCR-2 but not OSM-9. Further protein-protein interaction (PPI) analyses showed other targets associated with enzymatic catalysis and calcium ion binding activity. The resulting data help to better understand the broad-spectrum pharmacological activity of vanilloids.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-023-03876-1DOI Listing

Publication Analysis

Top Keywords

capsaicin eugenol
16
signal transduction
12
activity vanilloids
8
caenorhabditis elegans
8
specific signal
8
transduction pathways
8
wnt signaling
8
antinociceptive activity
4
vanilloids
4
vanilloids caenorhabditis
4

Similar Publications

The objective of this study was to evaluate the effects of supplementing an essential oil blend (0.16 g/kg DM of carvacrol, eugenol, thymol, and capsaicin) and monensin (17.6 mg/kg DM TMR) on lactation performance, feeding behavior, and rumen fermentation of high-producing dairy cows.

View Article and Find Full Text PDF

Cancer prevention is currently envisioned as a molecular-based approach to prevent carcinogenesis in pre-cancerous stages, i.e., dysplasia and carcinoma .

View Article and Find Full Text PDF

Vanilloid analogs, which can activate transient receptor potential vanilloid 1 (TRPV1), have been classified into two types based on susceptibility to forskolin (FSK). Treatment of cells expressing TRPV1 with FSK enhances TRPV1 responses to capsaicin-type ligands while diminishing the responses to eugenol-type ligands. In this study, we determined the effect of FSK on the activation of TRPV1 stimulated with vanilloid ligands, through the influx of Ca2+ in HEK293T cells expressing TRPV1.

View Article and Find Full Text PDF

The objective of this work was to determine whether the addition of phytogenic compounds based on essential oils (carvacrol, eugenol, cinnamaldehyde) and resinous pepper oil (capsaicin) to the diet of Jersey cows at the beginning of lactation affects anti-inflammatory, antioxidant and immunomodulatory responses, as well as whether there are effects of EO on blood metabolites, ruminal fermentation, digestibility and milk production and composition. Six primiparous cows (370.00 ± 17 kg body weight (BW); 13.

View Article and Find Full Text PDF

We analyzed the effects of olfactory receptors (ORs) on transient receptor potential vanilloid 1 (TRPV1) activation using HEK293T cells co-expressing TRPV1 and OR51E1. We demonstrate here that the effect of OR51E1 on TRPV1 activation varies depending on the two TRPV1 ligands: capsaicin and eugenol. Notably, both of these ligands are vanilloid analogs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!