The green revolution in plastics should be accelerated due to growing sustainability concerns. Here, we develop a series of chemically recyclable polymers from the first reported cascade polymerization of H O, COS, and diacrylates. In addition to abundant feedstocks, the method is efficient and air-tolerant, uses common organic bases as catalysts, and yields polymers with high molecular weights under mild conditions. Such polymers, structurally like polyethylene with low-density in-chain polar groups, manifest impressive toughness and ductility comparable to high-density polyethylene. The in-chain ester group acts as a breaking point, enabling these polymers to undergo chemical recycling through two loops. The structures and properties of these polymers also have an immeasurably expanded range owing to the versatility of our method. The readily available raw materials, facile synthesis, and high performance make these polymers promising prospects as sustainable materials in practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202219251 | DOI Listing |
Waste Manag Res
January 2025
Bohai Rim Energy Research Institute, Northeast Petroleum University, Daqing, Heilongjiang, China.
In this systematic review, advancements in plastic recycling technologies, including mechanical, thermolysis, chemical and biological methods, are examined. Comparisons among recycling technologies have identified current research trends, including a focus on pretreatment technologies for waste materials and the development of new organic chemistry or biological techniques that enable recycling with minimal energy consumption. Existing environmental and economic studies are also compared.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.
The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Colorado State University, Chemistry and Biochemistry, 301 W. Pitkin Street, 215 UCB, 80523, United States, 80523, Fort Collins, UNITED STATES OF AMERICA.
Synthetic polymers have found widespread use with functional lifetimes from seconds to decades. However, the lack of end-of-life treatment for these plastics is causing a significant environmental and human health crisis due to their persistence and bioaccumulation. Upcycling post-consumer plastic waste to products with inherent recyclability is an attractive strategy to tackle this problem, as it can broaden the range of accessible materials and uncover unprecedented features while dealing with current plastic waste.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
The sustainable management of polydiene waste represents a formidable challenge in the realm of polymer chemistry, given the extensive industrial utilization of polydienes due to their superior elastomeric properties. This comprehensive Perspective addresses the multifaceted obstacles hindering efficient recycling of polydienes, encompassing environmental concerns, technical limitations, and economic disincentives. We systematically dissect the influence of polydienes' chemical structures on their recyclability, tracing the evolution of polydiene utilization and disposal practices while assessing the current landscape of waste management strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!