Pyrolysis activation energy of cellulosic fibres investigated by a method derived from the first order global model.

Carbohydr Polym

School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK. Electronic address:

Published: April 2023

The pyrolysis kinetics of cellulosic fibres, a natural cotton yarn (NCY) and a mercerized cotton yarn (MCY), has been explored with a modified first order global analysis method (FOG), via a series of non-isothermal experiments, using thermogravimetric analysis (TGA). The modified FOG analysis routine was developed to overcome discrepancy in heating rate and the difference between exact results and approximations in integrals. The intrinsic pyrolysis activation energy, with temperature range tending to zero, was found to be independent of heating rate and approximation used, giving average values of 153 ± 2 kJ/mol for NCY and 192 ± 7 kJ/mol for MCY. This proves the applicability of the reported analysis routine under the conducted TGA measurements. The reasons for different values were hypothesized to be the difference in chemical composition and crystalline structure. The findings provide a new approach in the investigation on pyrolysis kinetics of biomass and factors impacting their pyrolytic behaviour.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2022.120518DOI Listing

Publication Analysis

Top Keywords

pyrolysis activation
8
activation energy
8
cellulosic fibres
8
order global
8
pyrolysis kinetics
8
cotton yarn
8
analysis routine
8
heating rate
8
pyrolysis
4
energy cellulosic
4

Similar Publications

Nitrogen doping turns carbonaceous materials into fast-reacting catalysts for reductive dechlorination.

Environ Pollut

January 2025

Department of Plant and Environmental Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. Electronic address:

Nitrogen (N) doping of biomass prior pyrolysis has been identified as an effective approach for enhancing biochar catalytic reactivity. However, high-temperature pyrolysis of N-rich biomass may produce N-devoid biochars with high reactivity, calling for attention to the true causes of the reactivity increases and the role of nitrogen. In this study, N-doped wheat straw biochar (N-BC) materials were produced using urea as N dopant and different pyrolysis conditions, and their catalytic reactivity assessed for the reduction of trichloroethylene (TCE) by green rust (GR), a layered Fe(II)Fe(III) hydroxide.

View Article and Find Full Text PDF

Recent advances in valorization of lignocellulosic waste into biochar and its functionalization for the removal of chromium ions.

Int J Biol Macromol

January 2025

Sichuan Academy of Forestry, Chengdu, Sichuan 610081, China; Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Chengdu, Sichuan 610081, China. Electronic address:

Lignocellulosic waste is a prevalent byproduct of agricultural and forestry activities which is an excellent feedstock for the preparation of biochar. This research area is of interest to the scientific community due to its potential in environmental remediation. In this regard, this review examines the latest advancements in transforming lignocellulosic waste into biochar and explores recent innovations in enhancing its functionality for chromium ion removal.

View Article and Find Full Text PDF

Efficacy and durability of cobalt sulfide nanoparticles and axial sulfur-coordinated cobalt single-atom composite sites in hydrogenative nitroaromatics decontamination.

J Colloid Interface Sci

January 2025

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China. Electronic address:

Emerging single-atom materials and metal sulfides hold significant promise as alternatives to precious metal catalysts for nitroaromatics conversion; however, their intrinsic activity and durability remain insufficiently understood. Herein, sulfur and nitrogen co-doped carbon matrices incorporating CoS nanoparticles and single-atom Co with Co-N-S coordination were constructed through a facile pyrolysis approach. Advanced characterization techniques, such as X-ray absorption fine structure (XAFS) and aberration-corrected electron microscopy, unveiled unique structural features underpinning exceptional catalytic efficiency and recyclability.

View Article and Find Full Text PDF

Total antioxidant capacity (TAC) is an important indicator for assessing the merit of natural plants and foods. Herein, a visual TAC assay is developed based on the oxidase-like activity of nitrogen-doped carbon nanotubes loaded with Fe nanoparticles (FeNPs@NCNT), which is prepared via high-temperature pyrolysis of metal-organic framework precursors and can catalyze the oxidation of colorless -phenylenediamine (OPD) to colored 2,3-diaminophenazine (DAP). The addition of antioxidants (e.

View Article and Find Full Text PDF

The electrocatalytic conversion of oxygen to hydrogen peroxide offers a promising pathway for sustainable energy production. However, the development of catalysts that are highly active, stable, and cost-effective for hydrogen peroxide synthesis remains a significant challenge. In this study, a novel polyacid-based metal-organic coordination compound (Cu-PW) was synthesized using a hydrothermal approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!