Screen printed electrode (SPE) on carbon-based inks exhibits promising applications in biosensing, environment protection and food safety. We report here a unique carbon-based material comprising Pt-CuO nanocrystal interfacially anchored on functionalized carbon nanofiber (Pt-CuO@FCNF) and its functional ink to build SPE for ultrasensitive detection of cell released HO. Pt-CuO@FCNF is fabricated using a one-pot and mass production method through direct pyrolysis of Pt and CuO precursors together with FCNF. FCNF with 1-D structure and high electrical conductivity can interfically anchor Pt-CuO nanocrystal, which synergically promotes rich active site and catalytic activity towards HO. Pt-CuO@FCNF exhibits a wide linear response of 0.4 μM-11 mM, a low detection limit of 17 nM, a fast response time of 1.0 s, and good selectivity. Eventually, Pt-CuO@FCNF SPE realizes real-time and ultrasensitive qualification of HO released from both normal and cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.340829 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!