Recently, metal-organic frameworks (MOFs) have attracted tremendous attention as promising porous drug delivery systems for cancer treatment. In this work, for the first time, a novel magnetic maltose disaccharide molecule modified with MIL-88 metal-organic framework (FeO@C@MIL-88) was prepared, and then this targeted system was used for the delivery of the doxorubicin (DOX) drug. Eventually, FeO@C@MIL-88-DOX were successfully decorated with folic acid conjugated chitosan (FeO@C@MIL-88-DOX-FC) as a new targeted and controlled release drug system for treatment of MCF-7 breast cancer. The encapsulation efficiency of the DOX in the FeO@C@MIL-88 was obtained at ∼83.6%. The in vitro drug release profiles showed a pH-responsive controlled release of DOX in acidic pH confirming the performance of the systems in the cancerous environment. The DOX release mechanism from systems at pH 5 also showed that the kinetic data well fitted to the Korsmeyer-Peppas and Fickian diffusion. Furthermore, in vitro cytotoxicity and DAPI staining study clearly illustrated that the synthesized FeO@C@MIL-88 system had low cytotoxicity and good biocompatibility against MCF-7 cancer cells and MCF-10A normal cells. Whereas, FeO@C@MIL-88-DOX and FeO@C@MIL-88-DOX-FC exhibited good antitumor activity as a result of targeted delivery of DOX, which indicated the MCF-7 cell death with apoptotic effects. Based on these findings, the resulting carriers could be used as promising targeted drug delivery systems for cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2023.122675 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.
View Article and Find Full Text PDFRSC Adv
January 2025
The Center for Chemical Biology, School of Fundamental Science and Technology, Graduate School of Science and Technology, Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan +81-45-566-1580 +81-45-566-1839.
We prepared a cellulose nanofiber (CNF)-based porous membrane with three dimensional cellular structures. CNF was concentrated a surfactant-induced assembly by mixing CNF with a cationic surfactant, domiphen bromide (DB). Furthermore, they were accumulated by centrifugation to obtain a CNF-DB sol.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, China, 86 2568303569.
Background: Ventricular fibrillation (VF) is a vicious arrhythmia usually generated after removal of the aortic cross-clamp (ACC) in patients undergoing open-heart surgery, which could damage cardiomyocytes, especially in patients with left ventricular hypertrophy (LVH). Amiodarone has the prominent properties of converting VF and restoring sinus rhythm. However, few studies concentrated on the effect of amiodarone before ACC release on reducing VF in patients with LVH.
View Article and Find Full Text PDFAdv Mater
January 2025
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China.
The application of physical fields is crucial for droplet generation and manipulation, underpinning technologies like printing, microfluidic biochips, drug delivery, and flexible sensors. Despite advancements, precise micro/nanoscale droplet generation and accurate microfluidic reactions remain challenging. Inspired by the liquid ejection mechanisms in microscopic organisms, an electrostatic manipulator for the precise capture, emission, and transport of microdroplets is proposed.
View Article and Find Full Text PDFBMJ Open
December 2024
Department of Paediatrics/Division of Paediatric Respiratory Medicine and Allergology, Erasmus MC Sophia Children Hospital, Rotterdam, The Netherlands.
Introduction: Little is known about the effectiveness and safety of oxygen saturation (SpO2) thresholds in children admitted with respiratory distress. The current 90%-94% threshold could lead to prolonged administration of supplemental oxygen, increased duration of hospital admissions, distress for children and families, and healthcare costs. To balance reducing unnecessary oxygen administration and preventing hypoxia, a lower SpO2 threshold of 88% for oxygen supplementation in children has been suggested.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!