Drug release experiments and numerical simulations only give access to partial release data (i.e., within a finite time range t∈[0,t]). In this article, we propose fitting-based procedures to estimate the asymptotic time scales of the release process, namely the global relaxation time τ and the longest (or terminal) relaxation time τ, from partially sampled data of diffusion-controlled drug release systems. We test these procedures on both synthetic and experimental data using, as an example, the well-known Weibull function. Our results show that the Weibull function must be used with great care because the values of the fitting parameters can vary significantly depending on the ratio t/τ. Beyond their practical simplicity, the usefulness of our procedures is evidenced by the fact that: (1) the initial loading profile does not need to be known and (2) the chosen fitting function does not require any physical basis. These two advantages allow us to determine the diffusion coefficient of the molecules directly from the characteristic time τ.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.122674DOI Listing

Publication Analysis

Top Keywords

drug release
12
characteristic time
8
time scales
8
diffusion-controlled drug
8
release systems
8
partially sampled
8
sampled data
8
relaxation time
8
weibull function
8
time
6

Similar Publications

Introduction: The pursuit of linear dosage in pharmacy is essential for achieving consistent therapeutic release and enhancing patient compliance. This review provides a comprehensive summary of zero-order drug delivery systems, with a particular focus on reservoir-based systems emanated from different microfabrication technologies.

Areas Covered: The consideration of recent advances in drug delivery systems is given to encompass the key areas including the importance of achieving a constant drug release rate for therapeutic applications.

View Article and Find Full Text PDF

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes.

Beilstein J Nanotechnol

December 2024

Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung (ITB), Bandung 40132, Indonesia.

Endosomal entrapment significantly limits the efficacy of drug delivery systems. This study investigates sodium oleate-modified liposomes (SO-Lipo) as an innovative strategy to enhance endosomal escape and improve cytosolic delivery in 4T1 triple-negative breast cancer cells. We aimed to elucidate the mechanistic role of sodium oleate in promoting endosomal escape and compared the performance of SO-Lipo with unmodified liposomes (Unmodified-Lipo) and Aurein 1.

View Article and Find Full Text PDF

Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.

View Article and Find Full Text PDF

Introduction: The BIC-T&T study aimed to determine the efficacy of bictegraviremtricitabine/tenofovir alafenamide (BIC/F/TAF) and darunavir/cobicistat/emtricitabinetenofovir alafenamide (DRV/c/F/TAF) at suppressing viral load in a two-arm, open-label, multi-centre, randomised trial under a UK test-and-treat setting. This sub-study aimed to evaluate potential off-target cardiovascular impact by examining platelet function.

Methods: Platelets were isolated by centrifugation of citrated blood from participants attending Chelsea and Westminster Hospital or St Mary's Hospital at Week 48 following enrolment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!