Vanillic acid incorporated chitosan/poly(vinyl alcohol) active films were prepared by employing a cost-effective solvent casting technique. FTIR investigation validated the intermolecular interaction and formation of Schiff's base (C=N) between functional groups of vanillic acid, chitosan, and poly(vinyl alcohol). The addition of vanillic acid resulted in homogenous and dense morphology, as confirmed by SEM micrographs. The tensile strength of active films increased from 32 to 59 MPa as the amount of vanillic acid increased and the obtained values are more significant than reported polyethylene (2231 MPa) and polypropylene (31-38 MPa) films, widely utilized in food packaging. Active film's UV, water, and oxygen barrier properties exhibited excellent results with the incorporation of vanillic acid. Around 40 % of degradation commences within 15 days. Synergistic impact against S. aureus, E. coli, and C. albicans pathogens caused the expansion of the inhibition zone, evidenced by the excellent antimicrobial activity. The highest antioxidant capacity, 73.65 % of CPV-4 active film, proved that active films could prevent the spoilage of food from oxidation. Green chillies packaging was carried out to examine the potential of prepared active films as packaging material results in successfully sustaining carotenoid accumulation and prolonging the shelf life compared to conventional polyethylene (PE) packaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123499DOI Listing

Publication Analysis

Top Keywords

vanillic acid
24
active films
20
alcohol active
8
shelf life
8
active
7
vanillic
6
acid
6
films
6
evaluation mechanical
4
mechanical antimicrobial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!