The presence of organic micropollutants in water is an ongoing concern due to the potential risks to living organisms. β-Cyclodextrin-based adsorbents have been developed to remove organic micropollutants from water as they are deemed to be efficient, selective and reusable. This literature review establishes the current state of the knowledge on the application of β-Cyclodextrin adsorbents for the removal of organic micropollutants from water and determines knowledge gaps and recommendations for future studies. An inventory of organic micropollutants that have been studied was developed and it revealed that bisphenol-A has been the most commonly studied. Adsorbent configurations were reviewed and modifications to the adsorbent structures that have provided enhanced adsorption properties were identified. The size and shape of the organic micropollutants was found to affect the adsorption behavior. The surface charge of β-Cyclodextrin adsorbents influence adsorption when repulsive forces are present and the extent of repulsion can depend on the pH of the solution. Common competitors such as natural organic matter and inorganic ions do not significantly impact the adsorption of organic micropollutants however relatively small fulvic acids may compete for the β-Cyclodextrin cavity depending on the adsorbent type. Desorption of organic micropollutants from these adsorbents has been accomplished with alcohols and most adsorbents have been recovered and reused in adsorption/desorption cycles. The need for enhanced recovery processes that maintain water quality and adsorbent integrity was identified. The use of quantitative structure-activity relationships and molecular computational tools could potentially guide future environmental applications of β-Cyclodextrin adsorbents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.137964 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!