Background: Phthalate exposure during fetal life may disrupt testicular development. Congruent with this, studies have found shorter anogenital distance, reduced penile size and altered hormone levels in infant boys whose mothers were exposed to higher levels of some phthalates during pregnancy. Few studies have explored if such adverse effects persist in adulthood. Thus, we aimed to explore if there is an association between fetal phthalate exposure and markers of testicular function in young adult men.
Methods: In a longitudinal mother-child cohort from Copenhagen, Denmark, we examined 100 young men whose mothers during pregnancy had serum drawn and analyzed for 34 phthalate metabolites. Examinations of the young men took place at 18-20 years of age and included measurements of adult markers of testicular function (reproductive hormones, penile size, anogenital distance (AGD), testis volume, semen quality) and growth factors. Associations between maternal serum concentrations of phthalate metabolites and reproductive measures in the young men were tested using multiple linear regression.
Results: Most consistently, higher maternal phthalate exposure was associated with higher luteinizing hormone (LH) but unchanged testosterone in adult sons. Congruently, higher maternal exposure was associated with lower total and free testosterone/LH ratios in adult sons. For example, twice as high maternal MiNP was associated with a 7.9 % (95 % CI 1.6-13.8) lower free testosterone/LH ratio. There was no consistent pattern of associations between the different phthalate metabolites and other reproductive hormones, clinical outcomes, or semen quality. None of the tested associations was significant after multiplicity adjustment.
Conclusions: In this exploratory study, higher maternal exposure to some phthalates was associated with impaired testicular Leydig cell function evidenced by a lower total and free testosterone/LH ratio in adult sons. This unique 18-20-year follow-up study raises concern and suggests that exposure of pregnant women to phthalates may have long-term effects on adult reproductive health in male offspring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.161914 | DOI Listing |
Metabolomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:
Research has consistently linked exposure to particulate matter (PM) with adverse health outcomes, including cardiovascular and pulmonary morbidity and mortality. Understanding the mechanisms by which PM leads to these effects on human health is crucial for developing effective mitigation strategies. One aspect of PM research that has gained increased attention in the past few years is the bioaccessibility of inhaled PM-bound pollutants that have potential to cause adverse health effects.
View Article and Find Full Text PDFChemosphere
January 2025
Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Investigaciones en Ciencias de La Salud (INICSA), Córdoba, Argentina; Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica. Córdoba, Argentina. Electronic address:
DEHP is a prevalent phthalate with wide industrial applications and well-documented endocrine-disrupting effects, including the potential disruption of AR signaling in different tissues. The present study aimed to investigate the effects of gestational and lactational exposure to environmentally relevant DEHP concentrations on AR expression and subcellular localization in the pituitary gland, the master endocrine organ, with a focus on gonadotroph cells by in vivo and in vitro approaches. After DEHP exposure during gestation and lactation, a sex-specific modulation was detected in AR-positive pituitary cells and AR protein expression as assessed through flow cytometry and western blot.
View Article and Find Full Text PDFChildren (Basel)
January 2025
Department of Pediatrics, Division of Pediatric Endocrinology, Demiroğlu Bilim University, 34394 Istanbul, Türkiye.
This review examines the inconsistent effects of endocrine-disrupting chemicals (EDCs) and pollutants on pubertal timing, emphasizing the methodological challenges contributing to variability in findings. Data from nine key studies reveal that chemicals such as BPA, phthalates, and PFAS impact pubertal onset differently based on exposure timing, dosage, and sex. For instance, BPA is linked to earlier puberty in girls but delayed onset in boys, while other EDCs show mixed effects across populations.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2025
Million Marker Wellness, Inc., Berkeley, CA 94704, USA.
Background: Daily-use products, including personal care products, household products, and dietary supplements, often contain ingredients that raise concerns regarding harmful chemical exposure. Endocrine-disrupting chemicals (EDCs) found in daily-use products are associated with numerous adverse health effects.
Methods: This pilot study explores the relationship between concentrations of EDCs in urine samples and products used 24 h prior to sample collection, and ingredients of concern in those products, in 140 adults of reproductive age in Northern Nevada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!