Hydrochemical characteristics and quality assessment of groundwater in Guangxi coastal areas, China.

Mar Pollut Bull

Key Laboratory of Coastal Science and Integrated Management, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Qingdao 266061, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China.

Published: March 2023

Groundwater is a main source of water supply in Guangxi Province, China. The urbanization expansion and ocean dynamic may change the groundwater quality, which is an important issue due to its effects on human health. In this paper, the influence of seawater intrusion and anthropogenic activity on the Guangxi coastal aquatic environment was assessed by geochemical and multivariate statistical methods. The result indicated that the chemical composition of groundwater in the study area is obviously associated with seawater and the main groundwater types were Ca·Na-Cl, Ca·Na-HCO, and Ca-HCO·Cl The groundwater evolution path from land to sea in Guangxi is Ca-HCO3 → Na·Mg-Cl. The origin of salts in the study area is mainly controlled by mineral weathering, the hydrogen and oxygen isotopes contents point to the aqueous source of atmospheric precipitation. According to the results of PCA, seawater intrusion and pollution caused by human activities play an increasingly important role in the evolution of groundwater characteristics. Seawater intrusion is the main factor for the increase of groundwater salinity in Guangxi, while domestic sewage, industrial waste, fertilizers, and pesticides may contribute to the nitrate pollution of groundwater, especially in Beihai. The degree of groundwater nitrate pollution is as follows: Fangchenggang < Qinzhou < Beihai, which is associated with the degree of urbanization in the coastal area. Finally, the results of the water quality index (WQI) assessment show that 82.8 % of the samples were classified as excellent, while there is still a need to be vigilant about groundwater pollution caused by seawater intrusion and groundwater pollution. The results will be valuable for sustainable groundwater resource management in Guangxi coastal zone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2022.114564DOI Listing

Publication Analysis

Top Keywords

seawater intrusion
12
groundwater
10
guangxi coastal
8
study area
8
nitrate pollution
8
guangxi
5
hydrochemical characteristics
4
characteristics quality
4
quality assessment
4
assessment groundwater
4

Similar Publications

Chlorinated ethenes are prevalent contaminants in industrial wastewater that detrimentally affect human health. As elevated tetrachloroethene (PCE) concentrations (18.0-18.

View Article and Find Full Text PDF

Seawater intrusion and human activities have significantly impacted coastal groundwater quality in many regions worldwide. This study systematically assessed groundwater chemistry, its suitability for drinking and irrigation (sample size, n = 3034), and exposure risks (n = 2863) across three key sub-regions of the Bohai Sea area: Bohai Bay, Liaodong Bay, and Laizhou Bay. Significant seasonal variations observed in groundwater chemistry at different depths in Bohai Bay region, with severe contamination from salinity-alkalinity and nitrogen-fluoride.

View Article and Find Full Text PDF

Antibiotic resistance gene levels within a highly urbanised estuary.

Mar Environ Res

January 2025

University of Technology Sydney, The School of Life Sciences, Ultimo, NSW, 2007, Australia. Electronic address:

Antibiotic resistant bacteria are increasingly being found in aquatic environments, representing a potential threat to public health. To examine the dynamics and potential sources of antibiotic-resistant genes (ARGs) in urbanised waterways, we performed a six-month temporal study at six locations within the Sydney Harbour estuary. These locations spanned a salinity gradient from seawater at the mouth of the harbour to freshwater at the more urbanised western sites.

View Article and Find Full Text PDF

Biochar Amendment Alleviates the Risk of High-Salinity Saltwater Intrusion for the Growth and Yield of Rice L.).

Recent Adv Food Nutr Agric

January 2025

Environmental Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.

Introduction: Saltwater intrusion poses a serious risk to global food security. As a soil amendment, biochar mitigates the negative effects of saltwater intrusion in rice, yet the beneficial effects on agricultural productivity with different exposure times and salt concentrations have not been fully examined.

Methods: A pot experiment was conducted to investigate the effects of 30% (w/w) rice husk biochar on the growth, ion accumulation, and yield of the Phitsanulok 2 rice cultivar under salt stress due to saltwater intrusion.

View Article and Find Full Text PDF

Mapping of water spread dynamics of a tropical Ramsar wetland of India for conservation and management.

Environ Monit Assess

January 2025

Department of Fisheries Resource Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682506, India.

Wetlands are dynamic ecosystems vital for sustaining ecological health and development at regional and global scales. Geospatial tools have emerged as essential for managing wetland ecosystems. This study assessed the spatiotemporal dynamics of water spread in the Point Calimere Wetland, a coastal Ramsar site located along the Bay of Bengal, India, from 1984 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!