The provision of self-cleaning velocities has been shown to reduce the risk of discolouration in water distribution networks (WDNs). Despite these findings, control implementations continue to be focused primarily on pressure and leakage management. This paper considers the control of diurnal flow velocities to maximize the self-cleaning capacity (SCC) of WDNs. We formulate a new optimal design-for-control problem where locations and operational settings of pressure control and automatic flushing valves are jointly optimized. The problem formulation includes a nonconvex objective function, nonconvex hydraulic conservation law constraints, and binary variables for modelling valve placement, resulting in a nonconvex mixed integer nonlinear programming (MINLP) optimization problem. Considering the challenges with solving nonconvex MINLP problems, we propose a heuristic algorithm which combines convex relaxations (with domain reduction), a randomization technique, and a multi-start strategy to compute feasible solutions. We evaluate the proposed algorithm on case study networks with varying size and degrees of complexity, including a large-scale operational network in the UK. The convex multi-start algorithm is shown to be a more robust solution method compared to an off-the-shelf genetic algorithm, finding good-quality feasible solutions to all design-for-control numerical experiments. Moreover, we demonstrate the implemented multi-start strategy to be a fast and scalable method for computing feasible solutions to the nonlinear SCC control problem. The proposed method extends the control capabilities and benefits of dynamically adaptive networks to improve water quality in WDNs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.119602 | DOI Listing |
J Comput Chem
January 2025
Scuola Superiore Meridionale, Napoli, Italy.
Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.
View Article and Find Full Text PDFSensors (Basel)
January 2025
African Centre of Excellence for Internet of Things, University of Rwanda, Kigali P.O. Box 4285, Rwanda.
The Internet of Things (IoT) and Industrial Internet of Things (IIoT) have drastically transformed industries by enhancing efficiency and flexibility but have also introduced substantial cybersecurity risks. The rise of zero-day attacks, which exploit unknown vulnerabilities, poses significant threats to these interconnected systems. Traditional signature-based intrusion detection systems (IDSs) are insufficient for detecting such attacks due to their reliance on pre-defined attack signatures.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Aerospace Engineering, Inha University, Incheon 22212, Republic of Korea.
This study aims to assess the feasibility of expanding the powder size distribution (PSD) of Ti-6Al-4V grade 5 powder for LPBF to achieve cost reduction. Parameter optimization to minimize the degradation of mechanical properties due to the expanded particle size distribution was conducted. Mechanical tests for specimens built using optimized parameters revealed minor reductions in strength: 3.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand.
This study examined the feasibility of using natural rubber (NR) latex foam as a dye adsorbent and antibacterial foam. The dyes used in this experiment were Methylene Blue (MB) and Alizarin Yellow (AY). Foams with that optimum density were further evaluated for adsorption isotherm, kinetics, and thermodynamic data.
View Article and Find Full Text PDFPlants (Basel)
December 2024
AirTech UAV Solutions Inc., Inverary, ON K0H 1X0, Canada.
The primary purpose of this study was to improve our understanding of remote sensing technologies and their potential application in vineyards to monitor yields and fruit composition, which could then be used for selective harvesting and winemaking. For yield and berry composition data collection, representative vines from the vineyard block were selected and geolocated, and the same vines were surveyed for remote sensing data collection by the multispectral and thermal sensors in the RPAS in 2015 and 2016. The spectral reflectance data were further analyzed for vegetation indices to evaluate the correlation between the variables.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!