Cross-modal guiding and reweighting network for multi-modal RSVP-based target detection.

Neural Netw

Laboratory of Brain Atlas and Brain-Inspired Intelligence, State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China. Electronic address:

Published: April 2023

Rapid Serial Visual Presentation (RSVP) based Brain-Computer Interface (BCI) facilities the high-throughput detection of rare target images by detecting evoked event-related potentials (ERPs). At present, the decoding accuracy of the RSVP-based BCI system limits its practical applications. This study introduces eye movements (gaze and pupil information), referred to as EYE modality, as another useful source of information to combine with EEG-based BCI and forms a novel target detection system to detect target images in RSVP tasks. We performed an RSVP experiment, recorded the EEG signals and eye movements simultaneously during a target detection task, and constructed a multi-modal dataset including 20 subjects. Also, we proposed a cross-modal guiding and fusion network to fully utilize EEG and EYE modalities and fuse them for better RSVP decoding performance. In this network, a two-branch backbone was built to extract features from these two modalities. A Cross-Modal Feature Guiding (CMFG) module was proposed to guide EYE modality features to complement the EEG modality for better feature extraction. A Multi-scale Multi-modal Reweighting (MMR) module was proposed to enhance the multi-modal features by exploring intra- and inter-modal interactions. And, a Dual Activation Fusion (DAF) was proposed to modulate the enhanced multi-modal features for effective fusion. Our proposed network achieved a balanced accuracy of 88.00% (±2.29) on the collected dataset. The ablation studies and visualizations revealed the effectiveness of the proposed modules. This work implies the effectiveness of introducing the EYE modality in RSVP tasks. And, our proposed network is a promising method for RSVP decoding and further improves the performance of RSVP-based target detection systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2023.01.009DOI Listing

Publication Analysis

Top Keywords

target detection
16
eye modality
12
cross-modal guiding
8
rsvp-based target
8
target images
8
eye movements
8
rsvp tasks
8
rsvp decoding
8
module proposed
8
multi-modal features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!