Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The novel coronavirus disease and its complications have motivated the design of new sensors with the highest sensitivity, and affinity for the detection of the SARS-CoV-2 virus is considered in many research studies. In this research article, we employ full atomistic molecular dynamics (MD) models to study the interactions between the receptor binding domain (RBD) and spike protein of the coronavirus and different metals such as gold (Au), platinum (Pt), and silver (Ag) to analyze their sensitivity against this virus. The comparison between the RBD interactions with ACE2 (angiotensin-converting enzyme 2) and different metals indicates that metals have remarkable effects on the structural features and dynamical properties of the RBD. The binding site of the RBD has more affinity to the surfaces of gold, platinum, and silver than to the other parts of the protein. Moreover, the initial configuration of the RBD relative to the metal surface plays an important role in the stability of metal complexes with the RBD. The binding face of the protein to the metal surface has been changed in the presence of different metals. In other words, the residues of the RBD that participate in RBD interactions with the metals are different irrespective of the initial configurations in which the [Asn, Thr, Tyr], [Ser, Thr, Tyr], and [Asn, Asp, Tyr] residues of the protein have a greater affinity to Ag, Au, and Pt, respectively. The corresponding metals have a considerable affinity to the RBD, which due to strong interactions with the protein can change the secondary structure and structural features. Based on the obtained results during the complexation process between the protein and metals, the helical structure of the protein changes to the bend and antiparallel β-sheets. The calculated binding energies for the RBD complexes with silver, gold, and platinum are -95.03, -138.03, and -133.96 kcal·mol, respectively. The adsorption process of the spike protein on the surfaces of different metals represents similar results and indicates that the entire spike protein of the coronavirus forms a more stable complex with the gold surface compared with other metals. Moreover, the RBD of the spike protein has more interactions with the surfaces than with the other parts of the protein. Therefore, it is possible to predict the properties of the coronavirus on the metal surface based on the dynamical behavior of the RBD. Overall, our computational results confirm that the gold surface can be considered as an outstanding substrate for developing new sensors with the highest sensitivity against SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.2c01378 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!