Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The inspection of very large or thick structures represents one of the biggest challenges for nondestructive techniques. For such objects, a particularly powerful technique is muography, which makes use of free, natural cosmic-ray muons. Among other applications, this technique has been applied to provide two-dimensional (2D) images of nuclear reactors, pyramids, or volcanos. Recently, 3D algorithms developed for medical applications were adapted to the special case of muon imaging to derive density maps. The main difficulties relate to the size of the object and to the limited number of available projections. Here, we report on the first 3D imaging of a whole nuclear reactor, obtained without any prior information on its structure and using the largest set of muographic projections ever made in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897657 | PMC |
http://dx.doi.org/10.1126/sciadv.abq8431 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!