Cell free DNA (cfDNA) and circulating tumor cell free DNA (ctDNA) from blood (plasma) are increasingly being used in oncology for diagnosis, monitoring response, identifying cancer causing mutations and detecting recurrences. Circulating tumor RB1 DNA (ctDNA) is found in the blood (plasma) of retinoblastoma patients at diagnosis before instituting treatment (naïve). We investigated ctDNA in naïve unilateral patients before enucleation and during enucleation (6 patients/ 8 mutations with specimens collected 5-40 minutes from severing the optic nerve) In our cohort, following transection the optic nerve, ctDNA RB1 VAF was measurably lower than pre-enucleation levels within five minutes, 50% less within 15 minutes and 90% less by 40 minutes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9897525PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0271505PLOS

Publication Analysis

Top Keywords

circulating tumor
12
retinoblastoma patients
8
patients enucleation
8
cell free
8
free dna
8
dna ctdna
8
ctdna blood
8
blood plasma
8
optic nerve
8
mutant-rb1 circulating
4

Similar Publications

Introduction: The spatially complex nature of mesothelioma and interventions like pleurodesis, surgery, and radiation often complicate imaging-based assessment. Further, cell-free DNA (cfDNA) based monitoring strategies are inadequate for mesothelioma, given the presence of a few recurring nonsynonymous somatic variants. However, patient-specific chromosomal rearrangements are commonly found in mesothelioma.

View Article and Find Full Text PDF

Prognostic and Predictive Biomarkers of Oligometastatic NSCLC: New Insights and Clinical Applications.

JTO Clin Res Rep

December 2024

Department of Pulmonary Diseases, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.

This review discusses the current data on predictive and prognostic biomarkers in oligometastatic NSCLC and discusses whether biomarkers identified in other stages and widespread metastatic disease can be extrapolated to the oligometastatic disease (OMD) setting. Research is underway to explore the prognostic and predictive value of biological attributes of tumor tissue, circulating cells, the tumor microenvironment, and imaging findings as biomarkers of oligometastatic NSCLC. Biomarkers that help define true OMD and predict outcomes are needed for patient selection for oligometastatic treatment, and to avoid futile treatments in patients that will not benefit from locoregional treatment.

View Article and Find Full Text PDF

Biomarker potential of plasma cell-free DNA for cholangiocarcinoma.

Heliyon

December 2024

Research Group in Multidimensional Health and Disease (MHD), Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand.

Background: To prevent the development of cholangiocarcinoma, an effective screening opisthorchiasis viverrini and/or differential diagnosis of and the cholangiocarcinoma is crucial needed. The level and quality of cfDNA in plasma are being investigated for their potential role as biomarkers in cholangiocarcinoma.

Methods: The study enrolled 43 healthy controls (N), 36 -infected subjects (OV), and 36 cholangiocarcinoma patients (CCA).

View Article and Find Full Text PDF

Disseminated tumor cells in bone marrow as predictive classifiers for small cell lung cancer patients.

J Natl Cancer Cent

December 2024

Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China.

Background: Small cell lung cancer (SCLC) is a highly aggressive disease characterized by early metastasis. Aneuploid CD31 disseminated tumor cells (DTCs) and CD31 disseminated tumor endothelial cells (DTECs) residing in the bone marrow are generally considered as the initiators of metastatic process. However, the clinical significance of DTCs and DTECs in SCLC remains poorly understood.

View Article and Find Full Text PDF

Emergence of Circulating Tumor DNA as a Precision Biomarker in Lung Cancer Radiation Oncology and Beyond.

Hematol Oncol Clin North Am

December 2024

Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. Electronic address:

Circulating tumor DNA (ctDNA) is emerging as a transformative biomarker in the management of non-small cell lung cancer (NSCLC). This review focuses on its role in detecting minimal residual disease (MRD), predicting treatment response, and guiding therapeutic decision-making in radiation oncology and immunotherapy. Key studies demonstrate ctDNA's prognostic value, particularly in identifying relapse risk and refining patient stratification for curative-intent and consolidative treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!