Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Anti-Felkin-Anh diastereoselectivity can be achieved for nucleophilic additions to α-chiral ketones upon stretching the ketone with a mechanical pulling force. Herein, a mechanochemical Felkin-Anh model is proposed for predicting the outcome of a nucleophilic addition to an α-chiral ketone. Essentially, the fully stretched chiral ketone has one substituent shielding each side of the carbonyl, in contrast to the Felkin-Anh model, in which free rotation around a bond is required to achieve the two rotamers of the ketone. Depending on the pulling scenario, either Felkin-Anh or anti-Felkin-Anh diastereoselectivity is obtained. The model is entirely based on the distance between the pulling points, which is maximized in the anti-periplanar arrangement. The major diastereomer is associated with the approach with the least steric interactions. The intuitive model is validated by means of mechanochemical density functional theory calculations. Importantly, the ketone is fully stretched in the sub 1 nN force regime, thus minimizing the risk of undesired homolytic bond rupture. Moreover, the mechanical force is not used for lowering the reaction barriers associated with the nucleophilic addition; instead, it is solely applied for locking the conformation of a molecule and provoking otherwise inaccessible reaction pathways on the force-modified potential energy surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.2c02318 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!