The pivotal regulatory role of circular RNAs (circRNAs) in ischemic stroke (IS) has been expounded. The study aimed to probe the exact role and underlying mechanism of circVRK1 in oxygen-glucose deprivation (OGD)-induced human brain microvascular endothelial cells (HBMECs) injury. HBMECs challenged by OGD were used as in vitro models of IS. Quantitative real-time PCR was used to examine the levels of circVRK1, vaccinia-related kinase 1 (VRK1), miR-150-5p and MLLT1 mRNA. Cell viability, migration angiogenesis ability and death were evaluated by Cell counting kit-8 assay, transwell assay, wound-healing assay, tube formation assay and flow cytometry analysis. All the protein levels were monitored by western blot assay. Enzyme-linked immunosorbent assay was conducted for examining cell oxidative stress. Dual-luciferase reporter assay, RIP assay and RNA pull-down assay were performed to verify the combination between miR-150-5p and circVRK1 or MLLT1. CircVRK1 was upregulated in OGD-treated HBMECs. CircVRK1 knockdown alleviated OGD-caused effects on HBMECs migration, angiogenesis, death, inflammatory response and oxidative stress. Furthermore, circVRK1 could sponge miR-150-5p, and miR-150-5p silencing also mitigated the impact of circVRK1 deficiency on OGD-evoked injury. Besides, MLLT1 acted as a molecular target of miR-150-5p, and the protective influence of miR-150-5p on OGD-induced cell damage was overturned by MLLT1 introduction. CircVRK1 knockdown weakened OGD-evoked injury in HBMECs through modulating miR-150-5p/MLLT1 pathway, and this might supply new insights and probable targets for IS treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00221-023-06555-3DOI Listing

Publication Analysis

Top Keywords

circvrk1
9
assay
9
brain microvascular
8
microvascular endothelial
8
cell damage
8
oxygen-glucose deprivation
8
modulating mir-150-5p/mllt1
8
injury hbmecs
8
migration angiogenesis
8
oxidative stress
8

Similar Publications

Objective: To elucidate the role of circVRK1 and its interaction with miR-4428 in regulating proliferation and apoptosis in acute lymphoblastic leukemia (ALL) cells.

Methods: KOCL44 ALL cells were cultured , and experimental groups included pcDNA, pcDNA-circVRK1, anti-miR-NC, anti-miR-4428, si-NC, si-circVRK1, pcDNA-circVRK1+miR-NC, and pcDNA-circVRK1+miR-4428. The expression levels of circVRK1 and miR-4428 were detected using qRT-PCR.

View Article and Find Full Text PDF

The pivotal regulatory role of circular RNAs (circRNAs) in ischemic stroke (IS) has been expounded. The study aimed to probe the exact role and underlying mechanism of circVRK1 in oxygen-glucose deprivation (OGD)-induced human brain microvascular endothelial cells (HBMECs) injury. HBMECs challenged by OGD were used as in vitro models of IS.

View Article and Find Full Text PDF

Circular RNA is an innovative kind of endogenous non-coding RNA, which could take part in tumorigenesis. Nonetheless, the potential molecular mechanisms of circVRK1 in the progression of osteosarcoma remain unresolved. In the current study, we initially investigated circVRK1 levels in osteosarcoma clinical samples and cell lines by qRT-PCR analysis and northern blot assay.

View Article and Find Full Text PDF

Pre-eclampsia (PE) is a worldwide pregnancy-related disorder. It is mainly characterized by defect migration and invasion of trophoblast cells. Recently, circular RNAs (circRNAs) have been believed to play a vital role in PE.

View Article and Find Full Text PDF

Background: As circular RNAs (circRNAs) have been found to significantly involve in the onset and progression of multiple malignant tumors including breast cancer (BC), this study aims at evaluating the diagnostic and prognostic values of circRNAs in this malady.

Methods: Available databases were thoroughly searched to collect studies on the diagnosis and/or prognosis of BC using circRNA profiling. The updated Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and the Newcastle Ottawa Scale (NOS) were used to assess the underlying bias of included studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!