Food safety issue caused by aflatoxins has aroused widespread concern in society. Herein, a novel fluorine-functionalized triazine-based porous organic polymer (F-POP) was developed for the first time by the simple condensation polymerization of 2,2'-bis(trifluoromethyl)benzidine and cyanuric chloride. With in-built fluorine functional group (F) and imine group (-NH-), F-POP displayed significantly superior adsorption ability for aflatoxins, outperforming fluorine-free POP due to the multiple interaction mechanisms of hydrogen bond, F-O interaction, π-π interaction, F-π interaction, and hydrophobic interaction. Thus, magnetic F-POP was prepared by introducing FeO into F-POP and then utilized as a magnetic sorbent for the extraction of trace aflatoxins in peanut and rice samples prior to high-performance liquid chromatography-fluorescence detection. Under the optimal conditions, the proposed method presented high sensitivity with the limit of detections at 0.005-0.15 ng g. F-POP also exhibited outstanding adsorption capability for many other organic pollutants, revealing its great potential for analysis or adsorption applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.2c08063 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!