Erythropoietin (EPO), hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF-2α), and vascular endothelial growth factor (VEGF) are key factors in the regulation of hypoxia, and can transcriptionally activate multiple genes under hypoxic conditions, thereby initiating large hypoxic stress in the network. The liver and kidneys are important metabolic organs of the body. We assessed the expression of EPO, HIF-1α, HIF-2α, and VEGF in liver and kidney tissues of plain and Tibetan sheep using hematoxylin and eosin staining, immunohistochemistry, and RT-qPCR. The results showed that EPO, HIF-1α, HIF-2α, and VEGF were expressed in tubular epithelial cells, collecting duct epithelial cells, mural epithelial cells, and the glomerular cytoplasm of Tibetan sheep, and their expression was significantly higher in Tibetan sheep than in plain sheep (P<0.05). EPO, HIF-1α, HIF-2α, and VEGF are expressed in hepatocytes, interlobular venous endothelial cells, and interlobular bile duct epithelial cells. In plain sheep, positive signals for EPO, HIF-1α, HIF-2α, and VEGF were localized mainly in interlobular venous endothelial cells, whereas VEGF and HIF-2α were negatively expressed in interlobular bile duct epithelial cells and positively expressed in EPO and HIF-1α. The differences in EPO, HIF-1α, and HIF-2α in Tibetan sheep were significantly higher than those in plain sheep (P<0.001). In the liver and kidney tissues of Tibetan sheep, EPO was associated with HIF-1α, HIF-2α, and VEGF (P<0.05). RT-qPCR results showed that EPO was not expressed, and HIF-1α, HIF-2α, and VEGF were expressed (P<0.05). The results showed that the expression of EPO, HIF-1α, HIF-2α, and VEGF in the kidney and liver of Tibetan sheep was higher than that in of plain sheep. Therefore, EPO, HIF-1α, HIF-2α, and VEGF may be involved in the adaptive response of plateau animals, which provides theoretical clarity to further explore the adaptive mechanism of plateau hypoxia in Tibetan sheep.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14670/HH-18-592 | DOI Listing |
BMC Genomics
January 2025
Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
Background: Prolonged natural selection and artificial breeding have contributed to increased uniformity within the Tibetan sheep population, resulting in a reduction in genetic diversity and the establishment of selective signatures in the genome. This process has led to a loss of heterozygosity in specific genomic regions and the formation of Runs of Homozygosity (ROH). Current research on ROH predominantly focuses on inbreeding and the signals of selection; however, there is a paucity of investigation into the genetic load and selective pressures associated with ROH, both within these regions and beyond.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
Meat quality is a key indicator of meat performance in ruminants, and its mechanism and regulation are also key to ruminant research. Studies have shown that animal meat quality is related to the gut microbiota. In this study, RT-qPCR and 16S omics were employed to assess meat quality and intestinal microbiota.
View Article and Find Full Text PDFHeliyon
July 2024
College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810016, China.
Tibetan sheep play a vital role in the livelihoods of herders and are an important part of the ecosystem of the Tibetan Plateau. In order to study the characteristics of the gut microorganisms of Tibetan sheep at high altitude, this study employed macrogenomic techniques to analyse the diversity and differences in the gut flora of Tibetan sheep in different regions of high altitude and high cold. The results demonstrated that at the phylum level, the dominant phylum in the ileo-cecum segment of Tibetan sheep in Qilian, Henan and Gonghe counties was identical, namely , and .
View Article and Find Full Text PDFSci Data
January 2025
Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
Argali stands as the largest species among wild sheep in Central and East Asia, with a concerning rate of decline estimated at 30%. The intraspecific taxonomy of argali remains contentious due to limited genomic data and unclear geographic separation. In this study, we constructed a chromosome-level genome assembly and annotation for the Tibetan argali (O.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China.
Tail fat is essential for sheep survival in extreme environments, yet its significance is often overlooked, leading to the decline of fat-tailed breeds. This study identified a novel lncRNA, (), through transcriptome sequencing, showing differential expression in the tail adipose tissues of Lanzhou Fat-Tailed (LFT) sheep and Tibetan (TS) sheep. Highly expressed in adipose tissues, inhibits preadipocyte proliferation and promotes 3T3-L1 differentiation, suggesting its role in regulating fat deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!