Treatment of atrial fibrillation (AF) remains challenging despite significant progress in understanding its underlying mechanisms. The first detailed, quantitative theory of functional re-entry, the 'leading circle' model, was developed more than 40 years ago. Subsequently, in decades of study, an alternative paradigm based on spiral waves has long been postulated to drive AF. The rotor as a 'spiral wave generator' is a curved 'vortex' formed by spin motion in the two-dimensional plane, identified using advanced mapping methods in experimental and clinical AF. However, it is challenging to achieve complementary results between experimental results and clinical studies due to the limitation in research methods and the complexity of the rotor mechanism. Here, we review knowledge garnered over decades on generation, electrophysiological properties, and three-dimensional (3D) structure diversity of the rotor mechanism and make a comparison among recent clinical approaches to identify rotors. Although initial studies of rotor ablation at many independent centres have achieved promising results, some inconclusive outcomes exist in others. We propose that the clinical rotor identification might be substantially influenced by (i) non-identical surface activation patterns, which resulted from a diverse 3D form of scroll wave, and (ii) inadequate resolution of mapping techniques. With rapidly advancing theoretical and technological developments, future work is required to resolve clinically relevant limitations in current basic and clinical research methodology, translate from one to the other, and resolve available mapping techniques.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062333 | PMC |
http://dx.doi.org/10.1093/europace/euad002 | DOI Listing |
Molecular rotor-based fluorophores (RBFs) that are target-selective and sensitive to both polarity and viscosity are valuable for diverse biological applications. Here, we have designed next-generation RBFs based on the underexplored bimane fluorophore through either changing in aryl substitution or varying π-linkages between the rotatable electron donors and acceptors to produce red-shifted fluorescence emissions with large Stokes shifts. RBFs exhibit a twisted intramolecular charge transfer mechanism that enables control of polarity and viscosity sensitivity, as well as target selectivity.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry, University of Manchester, Manchester, UK.
Cells display a range of mechanical activities generated by motor proteins powered through catalysis. This raises the fundamental question of how the acceleration of a chemical reaction can enable the energy released from that reaction to be transduced (and, consequently, work to be done) by a molecular catalyst. Here we demonstrate the molecular-level transduction of chemical energy to mechanical force in the form of the powered contraction and powered re-expansion of a cross-linked polymer gel driven by the directional rotation of artificial catalysis-driven molecular motors.
View Article and Find Full Text PDFAn Acad Bras Cienc
January 2025
University of Technology, Department of Control and System Engineering, Baghdad, 10066, Iraq.
Latency in flux observation has an adverse effect on the performance of observer-based field-oriented speed control for three-phase induction motor (IM). The reduction of the convergent rate of estimation errors could improve the performance of speed-controlled IM based on flux observers. The main contribution is to design a fast convergent flux observer, which provides bounded estimation error immediately after one instant of motor startup.
View Article and Find Full Text PDFProteins
January 2025
Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
Adenosine triphosphate (ATP) synthases are large enzymes present in every living cell. They consist of a transmembrane and a soluble domain, each comprising multiple subunits. The transmembrane part contains an oligomeric rotor ring (c-ring), whose stoichiometry defines the ratio between the number of synthesized ATP molecules and the number of ions transported through the membrane.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!