Skin manifestations of inborn errors of NF-κB.

Front Pediatr

Department of Immunology, Cambridge University Hospitals, Cambridge, United Kingdom.

Published: January 2023

More than 400 single gene defects have been identified as inborn errors of immunity, including many arising from genes encoding proteins that affect NF-κB activity. We summarise the skin phenotypes in this subset of disorders and provide an overview of pathogenic mechanisms. NF-κB acts cell-intrinsically in basal epithelial cells during differentiation of skin appendages, influences keratinocyte proliferation and survival, and both responses to and amplification of inflammation, particularly TNF. Skin phenotypes include ectodermal dysplasia, reduction and hyperproliferation of keratinocytes, and aberrant recruitment of inflammatory cells, which often occur in combination. Phenotypes conferred by these rare monogenic syndromes often resemble those observed with more common defects. This includes oral and perineal ulceration and pustular skin disease as occurs with Behcet's disease, hyperkeratosis with microabscess formation similar to psoriasis, and atopic dermatitis. Thus, these genotype-phenotype relations provide diagnostic clues for this subset of IEIs, and also provide insights into mechanisms of more common forms of skin disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9888762PMC
http://dx.doi.org/10.3389/fped.2022.1098426DOI Listing

Publication Analysis

Top Keywords

inborn errors
8
skin phenotypes
8
skin disease
8
skin
6
skin manifestations
4
manifestations inborn
4
errors nf-κb
4
nf-κb 400
4
400 single
4
single gene
4

Similar Publications

Introduction: Liquid biopsy as a non-invasive method to investigate cancer biology and monitor residual disease has gained significance in clinical practice over the years. Whilst its applicability in carcinomas is well established, the low incidence and heterogeneity of bone and soft tissue sarcomas explains the less well-established knowledge considering liquid biopsy in these highly malignant mesenchymal neoplasms.

Materials And Methods: A systematic literature review adhering to the PRISMA guidelines initially identified 920 studies, of whom 68 original articles could be finally included, all dealing with clinical applicability of liquid biopsy in sarcoma.

View Article and Find Full Text PDF

Human recombination-activating gene (RAG) deficiency can manifest with distinct clinical and immunological phenotypes. By applying a multiomics approach to a large group of -mutated patients, we aimed at characterizing the immunopathology associated with each phenotype. Although defective T and B cell development is common to all phenotypes, patients with hypomorphic variants can generate T and B cells with signatures of immune dysregulation and produce autoantibodies to a broad range of self-antigens, including type I interferons.

View Article and Find Full Text PDF

Failure to repair damaged NAD(P)H blocks de novo serine synthesis in human cells.

Cell Mol Biol Lett

January 2025

Enzymology and Metabolism Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367, Belvaux, Luxembourg.

Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors.

View Article and Find Full Text PDF

Untargeted metabolomics analysis as a potential screening tool for 3-methylglutaconic aciduria syndromes.

Mol Genet Metab

December 2024

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong, China.

The 3-methylglutaconic aciduria (3-MGA-uria) syndromes comprise a heterogeneous group of inborn errors of metabolism defined biochemically by detectable elevation of 3-methylglutaconic acid (3-MGA) in the urine. In type 1 (or primary) 3-MGA-uria, distal defects in the leucine catabolism pathway directly cause this elevation. Secondary 3-MGA-uria syndromes, however, are unrelated to leucine metabolism-specific defects but share a common biochemical phenotype of elevated 3-MGA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!