Heat stress tolerance in peas ( L.): Current status and way forward.

Front Plant Sci

Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, KS, United States.

Published: January 2023

In the era of climate change, the overall productivity of pea ( L.) is being threatened by several abiotic stresses including heat stress (HS). HS causes severe yield losses by adversely affecting several traits in peas. A reduction in pod yield has been reported from 11.1% to 17.5% when mean daily temperature increase from 1.4 to 2.2°C. High-temperature stress (30.5-33°C) especially during reproductive phase is known to drastically reduce both seed yield and germination. HS during germination and early vegetative stage resulted in poor emergence and stunted plant growth along with detrimental effects on physiological functions of the pea plant. To combat HS and continue its life cycle, plants use various defense strategies including heat escape, avoidance or tolerance mechanisms. Ironically, the threshold temperatures for pea plant and its responses are inconsistent and not yet clearly identified. Trait discovery through traditional breeding such as semi leaflessness (), upright growing habit, lodging tolerance, lower canopy temperature and small seeded nature has highlighted their utility for greater adaptation under HS in pea. Screening of crop gene pool and landraces for HS tolerance in a targeted environment is a simple approach to identify HS tolerant genotypes. Thus, precise phenotyping using modern phenomics tools could lead to increased breeding efficiency. The NGS (next generation sequencing) data can be associated to find the candidate genes responsible for the HS tolerance in pea. In addition, genomic selection, genome wide association studies (GWAS) and marker assisted selection (MAS) can be used for the development of HS tolerant pea genotypes. Additionally, development of transgenics could be an alternative strategy for the development of HS tolerant pea genotypes. This review comprehensively covers the various aspects of HS tolerance mechanisms in the pea plant, screening protocols, omic advances, and future challenges for the development of HS tolerant genotypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887200PMC
http://dx.doi.org/10.3389/fpls.2022.1108276DOI Listing

Publication Analysis

Top Keywords

pea plant
12
development tolerant
12
heat stress
8
pea
8
including heat
8
tolerance mechanisms
8
tolerant genotypes
8
tolerant pea
8
pea genotypes
8
tolerance
6

Similar Publications

Effects of transglutaminase on the gelation properties and digestibility of pea protein isolate with resonance acoustic mixing pretreatment.

Food Chem

December 2024

School of Food Science and Engineering, and Natural Food Macromolecule Research Center, Shaanxi University of Science and Technology, Xi'an 710021, China. Electronic address:

Our previous research confirmed that resonance acoustic mixing (RAM) pretreatment effectively improved the emulsification and water retention of commercial pea protein isolate (PPI), but significantly reduced its gel performance. This study aimed to investigate the effect of transglutaminase (TGase, 0.1 %, 0.

View Article and Find Full Text PDF

Background: Fruits, with their diverse shapes, colors, and flavors, represent a fascinating aspect of plant evolution and have played a significant role in human history and nutrition. Understanding the origins and evolutionary pathways of fruits offers valuable insights into plant diversity, ecological relationships, and the development of agricultural systems. Arabidopsis thaliana (Brassicaceae, core eudicot) and Eschscholzia californica (California poppy, Papaveraceae, sister group to core eudicots) both develop dry dehiscent fruits, with two valves separating explosively from the replum-like region upon maturation.

View Article and Find Full Text PDF

is an aggressive pathogen of pulse crops and a causal agent in root rot disease that negatively impacts Canadian agriculture. This study reports the results of a targeted metabolomics-based profiling of secondary metabolism in an 18-strain panel of cultured axenically in multiple media conditions, in addition to an in planta infection assay involving four strains inoculated on two pea cultivars. Multiple secondary metabolites with known roles as virulence factors were detected which have not been previously associated with , including fungal decalin-containing diterpenoid pyrones (FDDPs), fusaoctaxins, sambutoxin and fusahexin, in addition to confirmation of previously reported secondary metabolites including enniatins, fusarins, chlamydosporols, JM-47 and others.

View Article and Find Full Text PDF

Abrin Toxin Paradoxically Increases Protein Synthesis in Stimulated CD4 T-Cells While Decreasing Protein Synthesis in Kidney Cells.

Curr Issues Mol Biol

December 2024

Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA.

Abrin, a toxin of the rosary pea plant (), has been implicated as causing an autoimmune demyelinating disease in humans, but the exact mechanisms responsible for the induction of these demyelinating conditions are still unknown. Certain superantigen microbial toxins such as Staphylococcus enterotoxin type A, type D, type E or streptococcal pyrogenic exotoxin type C also lead to various diseases including autoimmune disorders of the nervous system. Here, the effect of abrin toxin on the immune reaction was studied in human CD4 T-cell lines, and its inhibition of protein synthesis in kidney cells.

View Article and Find Full Text PDF

Efficacy and Fate of RNA Interference Molecules in the Green Pea Aphid, Acyrthosiphon pisum.

Arch Insect Biochem Physiol

December 2024

Biological Control of Insects Research Laboratory, Research Park, USDA Agricultural Research Service, Columbia, Missouri, USA.

RNA interference (RNAi) is a promising technology for controlling insect pests of agriculture. This technology is mediated through the application of double-stranded RNAs (dsRNAs), which are processed within the insect cells into small interfering RNAs (siRNAs). These molecules then target and reduce the expression of the insect-specific genes that can kill or reduce the performance of the pest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!