Reductive soil disinfestation (RSD) is an anaerobic and facultative anaerobic microbial-mediated soil management process. The extent of improvement of diseased soil properties by RSD relative to comparable healthy soil is, however, not well characterized. Importantly, how to promote the colonization efficiency of these facultative anaerobic functional species to ensure soil and plant health remain unknown. Here, wilt-diseased soil of grown under a plastic-shed field (PS-CK) was used to conduct molasses-RSD (MO-RSD) along with sp. (a model of facultative anaerobic species) (MO-RSD) treatment, and the soil from a nearby open-air paddy field was considered comparable healthy soil (OA-CK). Both RSD treatments significantly improved the properties of PS-CK soil, and the extent of improvement of soil pH, reduction efficiency (98.36%~99.56%), and microbial community and functional composition were higher than that achieved for OA-CK soil, which indicated that RSD-regulated most soil properties outperformed those of the comparable healthy soil. The disease incidence and ascorbic acid content of in MO-RSD- and MO-RSD-treated soils were considerably decreased, while the weight and soluble protein contents were correspondingly increased, as compared to those of in PS-CK soil. Specifically, the changes in these physiological properties of in MO-RSD soil performed well than that in MO-RSD soil. The relative abundances of , , , , , and enriched in both RSD-treated soils were positively correlated with and negatively correlated with population and disease incidence ( < 0.05). Notably, the relative abundances of these potential probiotics were considerably higher in MO-RSD-treated soil than in MO-RSD alone-treated soil. These results show that the RSD process with inoculation of sp. could promote the colonization of this species and simultaneously stimulate the proliferation of other probiotic consortia to further enhance soil health and plant disease resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9888761 | PMC |
http://dx.doi.org/10.3389/fpls.2022.1095656 | DOI Listing |
Braz J Microbiol
January 2025
Laboratório de Genética de Microrganismos (LAGEM), Departamento de Biologia Geral - CCB, Universidade Estadual de Londrina - Campus Universitário, Londrina, PR, Brazil.
The common bean (Phaseolus vulgaris L.) plays a significant economic and social role in Brazil. However, the national average yield remains relatively low, largely because most bean cultivation is undertaken by small-scale farmers.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, PR-445, Km 380, C.P. 10.011, CEP 86.057-970, Londrina, Paraná, Brazil.
Cowpea (Vigna unguiculata) is recognized as a promiscuous legume in its symbiotic relationships with rhizobia, capable of forming associations with a wide range of bacterial species. Our study focused on assessing the diversity of bacterial strains present in cowpea nodules when inoculated with soils from six indigenous lands of Mato Grosso do Sul state, Central-Western Brazil, comprising the Cerrado and the Pantanal biomes, which are known for their rich diversity. The DNA profiles (BOX-PCR) of 89 strains indicated great genetic diversity, with 20 groups and 23 strains occupying single positions, and all strains grouped at a final similarity level of only 25%.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Chemistry, Capital Normal University, Beijing, 100048, China.
Catechins in tea, as promoters of human health, have attracted widespread attention. Herein, a dual-signal mode (colorimetric and fluorescence) sensor array for catechin species fingerprinting was built based on PtNi bunched nanoparticle (PtNi-BNP)--phenylenediamine (OPD)-HO system. PtNi-BNPs catalyze the reaction between OPD and HO to produce oxidized OPD (oxOPD) with both colorimetric (yellow) and fluorescent properties.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
Potato (Solanum tuberosum) is the third-most important food crop in the world. Although the potato genome has been fully sequenced, functional genomics research of potato lags behind that of other major food crops, largely due to the lack of a model experimental potato line. Here, we present a diploid potato line, 'Jan,' which possesses all essential characteristics for facile functional genomics studies.
View Article and Find Full Text PDFISME J
January 2025
DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
Soil bacteria are prolific producers of a myriad of biologically active secondary metabolites. These natural products play key roles in modern society, finding use as anti-cancer agents, as food additives, and as alternatives to chemical pesticides. As for their original role in interbacterial communication, secondary metabolites have been extensively studied under in vitro conditions, revealing many roles including antagonism, effects on motility, niche colonization, signaling, and cellular differentiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!