Background: Glioblastoma is the most common malignancy of the neuroepithelium, yet existing research on this tumor is limited. LASSO is an algorithm of selected feature coefficients by which genes associated with glioblastoma prognosis can be obtained.

Methods: Glioblastoma-related data were selected from the Cancer Genome Atlas (TCGA) database, and information was obtained for 158 samples, including 153 cancer samples and five samples of paracancerous tissue. In addition, 2,642 normal samples were selected from the Genotype-Tissue Expression (GTEx) database. Whole-gene bulk survival analysis and differential expression analysis were performed on glioblastoma genes, and their intersections were taken. Finally, we determined which genes are associated with glioma prognosis. The STRING database was used to analyze the interaction network between genes, and the MCODE plugin under Cytoscape was used to identify the highest-scoring clusters. LASSO prognostic analysis was performed to identify the key genes. Gene expression validation allowed us to obtain genes with significant expression differences in glioblastoma cancer samples and paracancer samples, and glioblastoma independent prognostic factors could be derived by univariate and multivariate Cox analyses. GO functional enrichment analysis was performed, and the expression of the screened genes was detected using qRT-PCR.

Results: Whole-gene bulk survival analysis of glioblastoma genes yielded 607 genes associated with glioblastoma prognosis, differential expression analysis yielded 8,801 genes, and the intersection of prognostic genes with differentially expressed genes (DEG) yielded 323 intersecting genes. PPI analysis of the intersecting genes revealed that the genes were significantly enriched in functions such as the formation of a pool of free 40S subunits and placenta development, and the highest-scoring clusters were obtained using the MCODE plug-in. Eight genes associated with glioblastoma prognosis were identified based on LASSO analysis: RPS10, RPS11, RPS19, RSL24D1, RPL39L, EIF3E, NUDT5, and RPF1. All eight genes were found to be highly expressed in the tumor by gene expression verification, and univariate and multivariate Cox analyses were performed on these eight genes to identify RPL39L and NUDT5 as two independent prognostic factors associated with glioblastoma. Both RPL39L and NUDT5 were highly expressed in glioblastoma cells.

Conclusion: Two independent prognostic factors in glioblastoma, RPL39L and NUDT5, were identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9888488PMC
http://dx.doi.org/10.3389/fonc.2022.1057383DOI Listing

Publication Analysis

Top Keywords

associated glioblastoma
20
genes
18
genes associated
16
glioblastoma
12
glioblastoma prognosis
12
analysis performed
12
independent prognostic
12
prognostic factors
12
rpl39l nudt5
12
cancer samples
8

Similar Publications

The prevalent tumor-supporting glioblastoma-associated macrophages (GAMs) promote glioblastoma multiforme (GBM) progression and resistance to multiple therapies. Repolarizing GAMs from tumor-supporting to tumor-inhibiting phenotype may troubleshoot. However, sufficient accumulation of drugs at the GBM site is restricted by blood-brain barrier (BBB).

View Article and Find Full Text PDF

Introduction: Extraneural metastases (ENM) from glioblastoma (GBM) remain extremely rare with only a scarce number of cases described in the literature. The lack of cases leads to no consensus on the optimal treatment and follow-up of these patients.

Research Question: Do patient or tumor characteristics describe risk factors for ENM in GBM patients, and is it possible to identify mechanisms of action?

Material And Methods: This study presents a 55-year-old man with diagnosed GBM who was referred to a CT due to reduced general condition and mild back pain which revealed extensive systemic metastases.

View Article and Find Full Text PDF

The foremost feature of glioblastoma (GBM), the most frequent malignant brain tumours in adults, is a remarkable degree of intra- and inter-tumour heterogeneity reflecting the coexistence within the tumour bulk of different cell populations displaying distinctive genetic and transcriptomic profiles. GBM with primitive neuronal component (PNC), recently identified by DNA methylation-based classification as a peculiar GBM subtype (GBM-PNC), is a poorly recognized and aggressive GBM variant characterised by nodules containing cells with primitive neuronal differentiation along with conventional GBM areas. In addition, the presence of a PNC component has been also reported in IDH-mutant high-grade gliomas (HGGs), and to a lesser extent to other HGGs, suggesting that regardless from being IDH-mutant or IDH-wildtype, peculiar genetic and/or epigenetic events may contribute to the phenotypic skewing with the emergence of the PNC phenotype.

View Article and Find Full Text PDF

Objective: Communicating hydrocephalus (CH) is an uncommon complication that can affect patients with glioblastoma (GBM). Due to its clinical and radiological findings, it presents as a chronic hydrocephalus. The mechanisms underlying its occurrence and impact on the prognosis of the disease are poorly known, but some studies have suggested that shunting can have a positive impact on the quality of life of these patients.

View Article and Find Full Text PDF

Hypoxia-induced circPLOD2a/b promotes the aggressiveness of glioblastoma by suppressing XIRP1 through binding to HuR.

Commun Biol

January 2025

Hubei Provincial Clinical Research Center of Central Nervous System Repair and Functional Reconstruction, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 430000, China.

Hypoxia is a common feature of glioblastoma (GBM). Circular RNAs (circRNAs) are identified as regulators in cancers. However, the role of circRNAs in GBM remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!