We report the experimental realization of the prime number quantum potential (), defined as the potential entering the single-particle Schrödinger Hamiltonian with eigenvalues given by the first prime numbers. Using computer-generated holography, we create light intensity profiles suitable to optically trap ultracold atoms in these potentials for different values. As a further application, we also implement a potential whose spectrum is given by the lucky numbers, a sequence of integers generated by a different sieve than the familiar Eratosthenes's sieve used for the primes. Our results pave the way toward the realization of quantum potentials with arbitrary sequences of integers as energy levels and show, in perspective, the possibility to set up quantum systems for arithmetic manipulations or mathematical tests involving prime numbers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887940 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgac279 | DOI Listing |
Nanoscale
January 2025
Department of Oncology, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
The exclusion of immune cells from the tumor can limit the effectiveness of immunotherapy in triple negative breast cancer (TNBC). The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway plays a crucial role in priming adaptive anti-tumor immunity through the production of type I interferons (IFNs), facilitating the maturation of dendritic cells (DCs) and the function of T cells. Although the increased expression of programmed death-ligand 1 (PD-L1) upon STING activation is favorable for amplifying the efficacy of immune checkpoint inhibitors (ICIs) and realizing combination therapy, the penetration barrier remains a major obstacle.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Smart Manufacturing Research Institute (SMRI), Universiti Teknologi MARA (UiTM), Shah Alam 40450, Selangor, Malaysia.
Natural composites are emerging as promising alternative materials for 3D printing in biomedical applications due to their biocompatibility, sustainability, and unique mechanical properties. The use of natural composites offers several advantages, including reduced environmental impact, enhanced biodegradability, and improved tissue compatibility. These materials can be processed into filaments or resins suitable for various 3D printing techniques, such as fused deposition modeling (FDM).
View Article and Find Full Text PDFCell Rep
December 2024
Westlake Genetech, Ltd., No. 1 Yunmeng Road, Cloud Town, Hangzhou 310024, China; School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou 310030, China. Electronic address:
Efficient prime editor (PE) delivery in vivo is critical for realizing its full potential in disease modeling and therapeutic correction. Although PE has been divided into two halves and delivered using dual adeno-associated viruses (AAVs), the editing efficiency at different gene loci varies among split sites. Furthermore, efficient split sites within Cas9 nickase (Cas9n) are limited.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; International Quantum Academy, Shenzhen 518048, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Quantum teleportation is of both fundamental interest and great practical importance in quantum information science. To date, quantum teleportation has been implemented in various physical systems, among which superconducting qubits are of particular practical significance as they emerge as a leading system to realize large-scale quantum computation. Nevertheless, scaling up the number of superconducting qubits on a single chip becomes increasing challenging because of some emergent technical difficulties.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry and Sarafan ChEM-H Institute, Stanford University, Stanford, California 94305, United States.
ConspectusLipids are essential for life and serve as cell envelope components, signaling molecules, and nutrients. For lipids to achieve their required functions, they need to be correctly localized. This requires the action of transporter proteins and an energy source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!