The aim of this study was to examine the inhibitory effect of blue light (BL) on the proliferation of metastatic cancer cells and synergistic properties with chemo-drugs. BL significantly inhibited the proliferation of B cell lymphoma (A20 and RAMOS) cells in a dose-dependent manner. Anti-proliferative effect of BL irradiation was identified to be associated with the inhibition of proliferating-cell nuclear antigen expression and cell cycle by decreasing S-phase cells. Consistent with its inhibitory effects, BL irradiation at 20 J/cm daily for 10 days inhibited metastasis of cancer cells which were distributed and invaded to other organs including bone marrow, liver, kidney, etc., and induced paraplegia, thereby leading to an increased survival rate of tumor-bearing mice. Anti-proliferative activity of BL was expanded in solid tumor cells including pancreatic carcinoma (Mia PaCa-2, PANC-1), lung carcinoma A549 and colorectal carcinoma HCT116 cells. Additionally, combination with chemo-drugs such as 5-FU and gemcitabine resulted in an increase in the anti-proliferative activity after BL irradiation accompanied by regulating mRNA translational process via inhibition of p70S6K, 4EBP-1 and eIF4E phosphorylation during cellular proliferation. These results indicate the anti-metastatic and photo-biogoverning abilities of BL irradiation as a potent therapeutic potential for repressing the progression of tumor cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/php.13789 | DOI Listing |
Viruses
December 2024
Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany.
Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.
View Article and Find Full Text PDFViruses
December 2024
1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece.
People with HIV (PWH) have an elevated risk of cardiovascular disease compared to those without HIV. This study aimed to investigate the relative serum expression of microRNAs (miRNAs) associated with arterial stiffness, a significant marker of cardiovascular disease. A total of 36 male PWH and 36 people without HIV, matched for age, body mass index, pack years, and dyslipidemia, were included in the study.
View Article and Find Full Text PDFThis study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.
View Article and Find Full Text PDFViruses
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.
View Article and Find Full Text PDFViruses
December 2024
Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!