Lung cancer is one of the most common malignancies worldwide and contributes to most cancer-related morbidity and mortality cases. During the past decades, the rapid development of nanotechnology has provided opportunities and challenges for lung cancer diagnosis and therapeutics. As one of the most extensively studied nanostructures, metal nanoparticles obtain higher satisfaction in biomedical applications associated with lung cancer. Metal nanoparticles have enhanced almost all major imaging strategies and proved great potential as sensor for detecting cancer-specific biomarkers. Moreover, metal nanoparticles could also improve therapeutic efficiency via better drug delivery, improved radiotherapy, enhanced gene silencing, and facilitated photo-driven treatment. Herein, the recently advanced metal nanoparticles applied in lung cancer therapy and diagnosis are summarized. Future perspective on the direction of metal-based nanomedicine is also discussed. Stimulating more research interests to promote the development of metal nanoparticles in lung cancer is devoted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202206624 | DOI Listing |
Langmuir
January 2025
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K. C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States.
Poisoning by organophosphate (OP) nerve agents remains a pressing global threat due to their extensive use in chemical warfare agents and pesticides, potentially causing high morbidity and mortality worldwide. This urgent need for effective countermeasures has driven considerable interest in innovative detoxification approaches. Among these, nanoparticle technology stands out for its multifunctional potential and wide-ranging applications.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Institute of Translational Medicine, Shanghai University, 200444 Shanghai, China.
Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
In this paper, alumina-modified wood liquefaction (AL-WP) was prepared by blending nano-alumina (AlO) into wood liquefaction phenolic resin (WP) using a co-blending method. Alumina-modified wood liquefaction protofilament fiber (AL-WPF) was obtained by melt-spinning, curing, and thermo-curing processes, which were followed by carbonization to obtain alumina-modified wood liquefaction carbon fiber (AL-WCF). This paper focuses on the enhancement effect of nano-alumina doping on the mechanical properties and heat resistance of wood liquefaction carbon fiber (WCF), explores the evolution of graphite microcrystalline structure during the high-temperature carbonization process, and optimizes the curing conditions of AL-WPF.
View Article and Find Full Text PDFPathogens
December 2024
Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland.
and are challenging to differentiate using methods such as phenotyping, 16S rRNA sequencing, or protein profiling through matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) due to their close relatedness. This study explores the potential for identifying and by incorporating reference spectra of metabolite profiles, obtained via surface-assisted laser desorption/ionization mass spectrometry (SALDI MS) employing gold nanoparticles (AuNPs), into the Bruker Biotyper database. Metabolite extracts from and cells were prepared using liquid-liquid extraction in a chloroform-methanol-water system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!